Properties

Label 4.5e2_11e2_181e3.12t36.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 11^{2} \cdot 181^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$17937466525= 5^{2} \cdot 11^{2} \cdot 181^{3} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 6 x^{4} + 11 x^{3} + 7 x^{2} - 14 x + 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T36
Parity: Even
Determinant: 1.181.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 6 + \left(21 a + 1\right)\cdot 29 + \left(20 a + 6\right)\cdot 29^{2} + \left(24 a + 10\right)\cdot 29^{3} + \left(28 a + 2\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 25 a + 23 + \left(10 a + 9\right)\cdot 29 + \left(23 a + 6\right)\cdot 29^{2} + \left(15 a + 13\right)\cdot 29^{3} + \left(26 a + 1\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 + 9\cdot 29 + 26\cdot 29^{2} + 4\cdot 29^{3} + 25\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 3 + \left(18 a + 10\right)\cdot 29 + \left(5 a + 25\right)\cdot 29^{2} + \left(13 a + 10\right)\cdot 29^{3} + \left(2 a + 2\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 14 + \left(7 a + 3\right)\cdot 29 + \left(8 a + 1\right)\cdot 29^{2} + \left(4 a + 26\right)\cdot 29^{3} + 5\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 + 24\cdot 29 + 21\cdot 29^{2} + 21\cdot 29^{3} + 20\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(3,4)$$-2$
$9$$2$$(3,4)(5,6)$$0$
$4$$3$$(1,5,6)$$1$
$4$$3$$(1,5,6)(2,3,4)$$-2$
$18$$4$$(1,2)(3,6,4,5)$$0$
$12$$6$$(1,3,5,4,6,2)$$0$
$12$$6$$(1,5,6)(3,4)$$1$
The blue line marks the conjugacy class containing complex conjugation.