Properties

Label 4.5e2_11_29e3.8t35.5
Dimension 4
Group $C_2 \wr C_2\wr C_2$
Conductor $ 5^{2} \cdot 11 \cdot 29^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_2 \wr C_2\wr C_2$
Conductor:$6706975= 5^{2} \cdot 11 \cdot 29^{3} $
Artin number field: Splitting field of $f= x^{8} - x^{7} + x^{6} - 2 x^{5} + x^{4} - 2 x^{3} + x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_2 \wr C_2\wr C_2$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 929 }$ to precision 6.
Roots:
$r_{ 1 }$ $=$ $ 188 + 797\cdot 929 + 563\cdot 929^{2} + 216\cdot 929^{3} + 272\cdot 929^{4} + 544\cdot 929^{5} +O\left(929^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 193 + 272\cdot 929 + 459\cdot 929^{2} + 885\cdot 929^{3} + 861\cdot 929^{4} + 111\cdot 929^{5} +O\left(929^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 284 + 798\cdot 929 + 254\cdot 929^{2} + 690\cdot 929^{3} + 92\cdot 929^{4} + 333\cdot 929^{5} +O\left(929^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 344 + 590\cdot 929 + 14\cdot 929^{2} + 376\cdot 929^{3} + 419\cdot 929^{4} + 237\cdot 929^{5} +O\left(929^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 451 + 633\cdot 929 + 928\cdot 929^{2} + 823\cdot 929^{3} + 466\cdot 929^{4} + 746\cdot 929^{5} +O\left(929^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 552 + 148\cdot 929 + 32\cdot 929^{2} + 371\cdot 929^{3} + 702\cdot 929^{4} + 225\cdot 929^{5} +O\left(929^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 845 + 34\cdot 929 + 232\cdot 929^{2} + 446\cdot 929^{3} + 49\cdot 929^{4} + 218\cdot 929^{5} +O\left(929^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 860 + 440\cdot 929 + 301\cdot 929^{2} + 835\cdot 929^{3} + 850\cdot 929^{4} + 369\cdot 929^{5} +O\left(929^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(2,6)(3,8)$
$(1,7)$
$(4,5)$
$(1,6)(2,4)(3,5)(7,8)$
$(6,8)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,3)(4,5)(6,8)$ $-4$
$2$ $2$ $(1,7)(4,5)$ $0$
$4$ $2$ $(1,7)$ $2$
$4$ $2$ $(1,7)(6,8)$ $0$
$4$ $2$ $(1,4)(2,6)(3,8)(5,7)$ $0$
$4$ $2$ $(1,4)(5,7)$ $-2$
$4$ $2$ $(1,7)(2,6)(3,8)(4,5)$ $2$
$4$ $2$ $(1,7)(2,3)(4,5)$ $-2$
$8$ $2$ $(1,6)(2,4)(3,5)(7,8)$ $0$
$8$ $2$ $(1,7)(2,6)(3,8)$ $0$
$4$ $4$ $(1,5,7,4)(2,6,3,8)$ $0$
$4$ $4$ $(1,5,7,4)$ $-2$
$4$ $4$ $(1,7)(2,8,3,6)(4,5)$ $2$
$8$ $4$ $(1,8,7,6)(2,4,3,5)$ $0$
$8$ $4$ $(1,5,7,4)(2,6)(3,8)$ $0$
$8$ $4$ $(1,5,7,4)(2,3)$ $0$
$16$ $4$ $(1,8,7,6)(2,4)(3,5)$ $0$
$16$ $4$ $(1,2,4,6)(3,5,8,7)$ $0$
$16$ $8$ $(1,3,5,8,7,2,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.