Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in $\Q_{ 929 }$ to precision 6.
Roots:
| $r_{ 1 }$ |
$=$ |
$ 188 + 797\cdot 929 + 563\cdot 929^{2} + 216\cdot 929^{3} + 272\cdot 929^{4} + 544\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 193 + 272\cdot 929 + 459\cdot 929^{2} + 885\cdot 929^{3} + 861\cdot 929^{4} + 111\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 284 + 798\cdot 929 + 254\cdot 929^{2} + 690\cdot 929^{3} + 92\cdot 929^{4} + 333\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 344 + 590\cdot 929 + 14\cdot 929^{2} + 376\cdot 929^{3} + 419\cdot 929^{4} + 237\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 451 + 633\cdot 929 + 928\cdot 929^{2} + 823\cdot 929^{3} + 466\cdot 929^{4} + 746\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 552 + 148\cdot 929 + 32\cdot 929^{2} + 371\cdot 929^{3} + 702\cdot 929^{4} + 225\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
| $r_{ 7 }$ |
$=$ |
$ 845 + 34\cdot 929 + 232\cdot 929^{2} + 446\cdot 929^{3} + 49\cdot 929^{4} + 218\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
| $r_{ 8 }$ |
$=$ |
$ 860 + 440\cdot 929 + 301\cdot 929^{2} + 835\cdot 929^{3} + 850\cdot 929^{4} + 369\cdot 929^{5} +O\left(929^{ 6 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 8 }$
| Cycle notation |
| $(2,6)(3,8)$ |
| $(1,7)$ |
| $(4,5)$ |
| $(1,6)(2,4)(3,5)(7,8)$ |
| $(6,8)$ |
| $(2,3)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 8 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $1$ |
$2$ |
$(1,7)(2,3)(4,5)(6,8)$ |
$-4$ |
| $2$ |
$2$ |
$(1,7)(4,5)$ |
$0$ |
| $4$ |
$2$ |
$(1,7)$ |
$2$ |
| $4$ |
$2$ |
$(1,7)(6,8)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(2,6)(3,8)(5,7)$ |
$0$ |
| $4$ |
$2$ |
$(1,4)(5,7)$ |
$-2$ |
| $4$ |
$2$ |
$(1,7)(2,6)(3,8)(4,5)$ |
$2$ |
| $4$ |
$2$ |
$(1,7)(2,3)(4,5)$ |
$-2$ |
| $8$ |
$2$ |
$(1,6)(2,4)(3,5)(7,8)$ |
$0$ |
| $8$ |
$2$ |
$(1,7)(2,6)(3,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,7,4)(2,6,3,8)$ |
$0$ |
| $4$ |
$4$ |
$(1,5,7,4)$ |
$-2$ |
| $4$ |
$4$ |
$(1,7)(2,8,3,6)(4,5)$ |
$2$ |
| $8$ |
$4$ |
$(1,8,7,6)(2,4,3,5)$ |
$0$ |
| $8$ |
$4$ |
$(1,5,7,4)(2,6)(3,8)$ |
$0$ |
| $8$ |
$4$ |
$(1,5,7,4)(2,3)$ |
$0$ |
| $16$ |
$4$ |
$(1,8,7,6)(2,4)(3,5)$ |
$0$ |
| $16$ |
$4$ |
$(1,2,4,6)(3,5,8,7)$ |
$0$ |
| $16$ |
$8$ |
$(1,3,5,8,7,2,4,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.