Properties

Label 4.5e2_11329.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5^{2} \cdot 11329 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$283225= 5^{2} \cdot 11329 $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 5 x^{4} + 9 x^{3} + 6 x^{2} - 9 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 32 + 47\cdot 59 + 17\cdot 59^{2} + 39\cdot 59^{3} + 51\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 35 a + 14 + \left(49 a + 16\right)\cdot 59 + \left(12 a + 26\right)\cdot 59^{2} + \left(39 a + 51\right)\cdot 59^{3} + \left(24 a + 55\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 56 + 11\cdot 59 + 43\cdot 59^{2} + 47\cdot 59^{3} + 20\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 24 a + 49 + \left(9 a + 30\right)\cdot 59 + \left(46 a + 48\right)\cdot 59^{2} + \left(19 a + 18\right)\cdot 59^{3} + \left(34 a + 41\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 36 a + 55 + \left(16 a + 44\right)\cdot 59 + \left(2 a + 27\right)\cdot 59^{2} + \left(46 a + 17\right)\cdot 59^{3} + \left(45 a + 33\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 23 a + 32 + \left(42 a + 25\right)\cdot 59 + \left(56 a + 13\right)\cdot 59^{2} + \left(12 a + 2\right)\cdot 59^{3} + \left(13 a + 33\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $0$
$6$ $2$ $(3,4)$ $2$
$9$ $2$ $(3,4)(5,6)$ $0$
$4$ $3$ $(1,5,6)(2,3,4)$ $-2$
$4$ $3$ $(1,5,6)$ $1$
$18$ $4$ $(1,2)(3,6,4,5)$ $0$
$12$ $6$ $(1,3,5,4,6,2)$ $0$
$12$ $6$ $(1,5,6)(3,4)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.