Properties

Label 4.5_7_13e2_17e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 7 \cdot 13^{2} \cdot 17^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1709435= 5 \cdot 7 \cdot 13^{2} \cdot 17^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 15 x^{3} - 15 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd
Determinant: 1.5_7.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: $ x^{2} + 69 x + 7 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 42 + \left(20 a + 53\right)\cdot 71 + \left(41 a + 47\right)\cdot 71^{2} + \left(26 a + 60\right)\cdot 71^{3} + \left(21 a + 45\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 21 + 13\cdot 71 + 55\cdot 71^{2} + 8\cdot 71^{3} + 34\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 34 a + 31 + \left(49 a + 32\right)\cdot 71 + \left(35 a + 23\right)\cdot 71^{2} + \left(57 a + 50\right)\cdot 71^{3} + \left(2 a + 70\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 + 12\cdot 71 + 2\cdot 71^{2} + 33\cdot 71^{3} + 52\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 37 a + 28 + \left(21 a + 26\right)\cdot 71 + \left(35 a + 45\right)\cdot 71^{2} + \left(13 a + 58\right)\cdot 71^{3} + \left(68 a + 18\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 52 a + 9 + \left(50 a + 4\right)\cdot 71 + \left(29 a + 39\right)\cdot 71^{2} + \left(44 a + 1\right)\cdot 71^{3} + \left(49 a + 62\right)\cdot 71^{4} +O\left(71^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(3,4)$$2$
$9$$2$$(1,2)(3,4)$$0$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$4$$3$$(1,2,6)$$1$
$18$$4$$(1,3,2,4)(5,6)$$0$
$12$$6$$(1,4,2,5,6,3)$$0$
$12$$6$$(1,2,6)(3,4)$$-1$
The blue line marks the conjugacy class containing complex conjugation.