Properties

Label 4.5_79e2_179e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 79^{2} \cdot 179^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$999839405= 5 \cdot 79^{2} \cdot 179^{2} $
Artin number field: Splitting field of $f= x^{6} - 7 x^{4} - x^{3} + 11 x^{2} + x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 36 + 33\cdot 41 + 17\cdot 41^{2} + 26\cdot 41^{3} + 3\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 + 38\cdot 41 + 10\cdot 41^{2} + 28\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 36 + \left(19 a + 14\right)\cdot 41 + \left(9 a + 10\right)\cdot 41^{2} + \left(12 a + 13\right)\cdot 41^{3} + \left(39 a + 24\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 39 a + 1 + \left(21 a + 29\right)\cdot 41 + \left(31 a + 19\right)\cdot 41^{2} + \left(28 a + 40\right)\cdot 41^{3} + \left(a + 6\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 17 + \left(34 a + 36\right)\cdot 41 + \left(30 a + 2\right)\cdot 41^{2} + \left(30 a + 38\right)\cdot 41^{3} + \left(7 a + 1\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 37 a + 29 + \left(6 a + 11\right)\cdot 41 + \left(10 a + 20\right)\cdot 41^{2} + \left(10 a + 17\right)\cdot 41^{3} + \left(33 a + 35\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(2,3,4)$
$(2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $2$
$6$ $2$ $(3,4)$ $0$
$9$ $2$ $(3,4)(5,6)$ $0$
$4$ $3$ $(1,5,6)(2,3,4)$ $1$
$4$ $3$ $(1,5,6)$ $-2$
$18$ $4$ $(1,2)(3,6,4,5)$ $0$
$12$ $6$ $(1,3,5,4,6,2)$ $-1$
$12$ $6$ $(1,5,6)(3,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.