Properties

Label 4.5_661e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 661^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$2184605= 5 \cdot 661^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} + x^{4} - 3 x^{3} + 2 x^{2} - 2 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 2 + 3 a\cdot 11 + 3 a\cdot 11^{2} + \left(10 a + 8\right)\cdot 11^{3} + \left(2 a + 8\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 10 + 6\cdot 11 + 6\cdot 11^{2} + 6\cdot 11^{3} + 6\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 3 }$ $=$ $ a + 8 + \left(2 a + 7\right)\cdot 11 + \left(10 a + 4\right)\cdot 11^{2} + \left(7 a + 6\right)\cdot 11^{3} + 7\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 + 4\cdot 11 + 11^{2} + 4\cdot 11^{3} + 8\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 7 a + 7 + \left(7 a + 9\right)\cdot 11 + \left(7 a + 9\right)\cdot 11^{2} + 11^{3} + \left(8 a + 10\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 1 + \left(8 a + 4\right)\cdot 11 + 10\cdot 11^{2} + \left(3 a + 5\right)\cdot 11^{3} + \left(10 a + 2\right)\cdot 11^{4} +O\left(11^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,4)(5,6)$
$(2,3)$
$(2,3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,4)(5,6)$$2$
$6$$2$$(3,6)$$0$
$9$$2$$(3,6)(4,5)$$0$
$4$$3$$(1,4,5)(2,3,6)$$1$
$4$$3$$(1,4,5)$$-2$
$18$$4$$(1,2)(3,5,6,4)$$0$
$12$$6$$(1,3,4,6,5,2)$$-1$
$12$$6$$(1,4,5)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.