Properties

Label 4.5_41e2_59e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 41^{2} \cdot 59^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$29257805= 5 \cdot 41^{2} \cdot 59^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{4} - 3 x^{3} - x^{2} + 4 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 39 a + 87 + \left(8 a + 4\right)\cdot 101 + \left(98 a + 42\right)\cdot 101^{2} + \left(85 a + 35\right)\cdot 101^{3} + \left(71 a + 15\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 84 a + 78 + \left(73 a + 87\right)\cdot 101 + \left(99 a + 77\right)\cdot 101^{2} + \left(22 a + 7\right)\cdot 101^{3} + \left(22 a + 3\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 62 a + 41 + \left(92 a + 100\right)\cdot 101 + \left(2 a + 21\right)\cdot 101^{2} + \left(15 a + 79\right)\cdot 101^{3} + \left(29 a + 14\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 10 + \left(27 a + 97\right)\cdot 101 + \left(a + 99\right)\cdot 101^{2} + \left(78 a + 100\right)\cdot 101^{3} + \left(78 a + 68\right)\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 74 + 96\cdot 101 + 36\cdot 101^{2} + 87\cdot 101^{3} + 70\cdot 101^{4} +O\left(101^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 13 + 17\cdot 101 + 24\cdot 101^{2} + 93\cdot 101^{3} + 28\cdot 101^{4} +O\left(101^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(2,4)$ $0$
$9$ $2$ $(1,3)(2,4)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $1$
$4$ $3$ $(1,3,5)$ $-2$
$18$ $4$ $(1,2,3,4)(5,6)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $-1$
$12$ $6$ $(1,3,5)(2,4)$ $0$
The blue line marks the conjugacy class containing complex conjugation.