Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 109 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 109 }$: $ x^{2} + 108 x + 6 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 35 + 32\cdot 109 + 72\cdot 109^{2} + 55\cdot 109^{3} + 82\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 98 a + 49 + \left(47 a + 68\right)\cdot 109 + \left(80 a + 78\right)\cdot 109^{2} + \left(48 a + 91\right)\cdot 109^{3} + \left(80 a + 73\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 71 a + 2 + \left(80 a + 88\right)\cdot 109 + \left(33 a + 41\right)\cdot 109^{2} + \left(74 a + 6\right)\cdot 109^{3} + \left(44 a + 28\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 23 + 22\cdot 109 + 28\cdot 109^{2} + 66\cdot 109^{3} + 38\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 11 a + 38 + \left(61 a + 18\right)\cdot 109 + \left(28 a + 2\right)\cdot 109^{2} + \left(60 a + 60\right)\cdot 109^{3} + \left(28 a + 105\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 38 a + 73 + \left(28 a + 97\right)\cdot 109 + \left(75 a + 103\right)\cdot 109^{2} + \left(34 a + 46\right)\cdot 109^{3} + \left(64 a + 107\right)\cdot 109^{4} +O\left(109^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(1,3)$ |
| $(1,3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $6$ |
$2$ |
$(1,2)(3,4)(5,6)$ |
$2$ |
| $6$ |
$2$ |
$(3,6)$ |
$0$ |
| $9$ |
$2$ |
$(3,6)(4,5)$ |
$0$ |
| $4$ |
$3$ |
$(1,3,6)$ |
$-2$ |
| $4$ |
$3$ |
$(1,3,6)(2,4,5)$ |
$1$ |
| $18$ |
$4$ |
$(1,2)(3,5,6,4)$ |
$0$ |
| $12$ |
$6$ |
$(1,4,3,5,6,2)$ |
$-1$ |
| $12$ |
$6$ |
$(2,4,5)(3,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.