Properties

Label 4.5_281e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 281^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$394805= 5 \cdot 281^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} + 19 x^{3} - 19 x^{2} + 20 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 59 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 59 }$: $ x^{2} + 58 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 8 + \left(36 a + 41\right)\cdot 59 + \left(25 a + 31\right)\cdot 59^{2} + \left(9 a + 58\right)\cdot 59^{3} + \left(52 a + 1\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 39 a + 28 + \left(22 a + 57\right)\cdot 59 + \left(33 a + 20\right)\cdot 59^{2} + \left(49 a + 42\right)\cdot 59^{3} + \left(6 a + 44\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 15 a + 13 + \left(9 a + 36\right)\cdot 59 + \left(6 a + 55\right)\cdot 59^{2} + 9 a\cdot 59^{3} + \left(15 a + 13\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 19 + 51\cdot 59 + 9\cdot 59^{2} + 54\cdot 59^{3} + 26\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 44 a + 28 + \left(49 a + 30\right)\cdot 59 + \left(52 a + 52\right)\cdot 59^{2} + \left(49 a + 3\right)\cdot 59^{3} + \left(43 a + 19\right)\cdot 59^{4} +O\left(59^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 24 + 19\cdot 59 + 6\cdot 59^{2} + 17\cdot 59^{3} + 12\cdot 59^{4} +O\left(59^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,6)$
$(1,3)(2,4)(5,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$0$
$6$$2$$(4,5)$$2$
$9$$2$$(2,6)(4,5)$$0$
$4$$3$$(1,2,6)(3,4,5)$$-2$
$4$$3$$(3,4,5)$$1$
$18$$4$$(1,3)(2,4,6,5)$$0$
$12$$6$$(1,3,2,4,6,5)$$0$
$12$$6$$(1,2,6)(4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.