Properties

Label 4.5_2039e2.6t13.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 2039^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$20787605= 5 \cdot 2039^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} - 19 x^{4} + 25 x^{3} + 95 x^{2} - 50 x + 516 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 23 a + 23 + 3\cdot 29 + \left(4 a + 8\right)\cdot 29^{2} + \left(23 a + 23\right)\cdot 29^{3} + \left(15 a + 11\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 3 a + 9 + \left(12 a + 23\right)\cdot 29 + \left(13 a + 24\right)\cdot 29^{2} + \left(24 a + 21\right)\cdot 29^{3} + \left(17 a + 21\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 14 + 11\cdot 29 + 22\cdot 29^{2} + 15\cdot 29^{3} + 7\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 6 a + 22 + \left(28 a + 13\right)\cdot 29 + \left(24 a + 27\right)\cdot 29^{2} + \left(5 a + 18\right)\cdot 29^{3} + \left(13 a + 9\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 26 + 11\cdot 29 + 11\cdot 29^{2} + 21\cdot 29^{3} + 7\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 26 a + 24 + \left(16 a + 22\right)\cdot 29 + \left(15 a + 21\right)\cdot 29^{2} + \left(4 a + 14\right)\cdot 29^{3} + \left(11 a + 28\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$0$
$6$$2$$(1,3)$$2$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)(2,5,6)$$-2$
$4$$3$$(2,5,6)$$1$
$18$$4$$(1,5,3,2)(4,6)$$0$
$12$$6$$(1,2,3,5,4,6)$$0$
$12$$6$$(1,3)(2,5,6)$$-1$
The blue line marks the conjugacy class containing complex conjugation.