Properties

Label 4.5_19e2_29e2_31e2.8t29.1c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 5 \cdot 19^{2} \cdot 29^{2} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$1458802805= 5 \cdot 19^{2} \cdot 29^{2} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 41 x^{6} + 2 x^{5} + 457 x^{4} + 240 x^{3} - 1302 x^{2} - 544 x + 863 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 14.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: $ x^{2} + 97 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 39 a + 59 + \left(44 a + 82\right)\cdot 101 + \left(31 a + 64\right)\cdot 101^{2} + \left(39 a + 95\right)\cdot 101^{3} + \left(98 a + 80\right)\cdot 101^{4} + \left(88 a + 72\right)\cdot 101^{5} + \left(40 a + 96\right)\cdot 101^{6} + \left(61 a + 95\right)\cdot 101^{7} + \left(98 a + 7\right)\cdot 101^{8} + \left(86 a + 47\right)\cdot 101^{9} + \left(63 a + 2\right)\cdot 101^{10} + \left(74 a + 64\right)\cdot 101^{11} + \left(a + 56\right)\cdot 101^{12} + \left(68 a + 58\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$
$r_{ 2 }$ $=$ $ 80 a + 87 + \left(88 a + 64\right)\cdot 101 + \left(95 a + 73\right)\cdot 101^{2} + \left(38 a + 46\right)\cdot 101^{3} + \left(7 a + 56\right)\cdot 101^{4} + \left(52 a + 66\right)\cdot 101^{5} + \left(86 a + 48\right)\cdot 101^{6} + \left(20 a + 74\right)\cdot 101^{7} + \left(39 a + 39\right)\cdot 101^{8} + \left(99 a + 73\right)\cdot 101^{9} + \left(60 a + 8\right)\cdot 101^{10} + \left(39 a + 91\right)\cdot 101^{11} + \left(5 a + 4\right)\cdot 101^{12} + \left(77 a + 10\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$
$r_{ 3 }$ $=$ $ 62 a + 13 + \left(56 a + 19\right)\cdot 101 + \left(69 a + 45\right)\cdot 101^{2} + \left(61 a + 19\right)\cdot 101^{3} + \left(2 a + 31\right)\cdot 101^{4} + \left(12 a + 27\right)\cdot 101^{5} + \left(60 a + 70\right)\cdot 101^{6} + \left(39 a + 98\right)\cdot 101^{7} + \left(2 a + 37\right)\cdot 101^{8} + \left(14 a + 94\right)\cdot 101^{9} + \left(37 a + 69\right)\cdot 101^{10} + \left(26 a + 96\right)\cdot 101^{11} + \left(99 a + 89\right)\cdot 101^{12} + \left(32 a + 25\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$
$r_{ 4 }$ $=$ $ 30 a + 84 + \left(7 a + 47\right)\cdot 101 + \left(81 a + 41\right)\cdot 101^{2} + \left(51 a + 2\right)\cdot 101^{3} + \left(96 a + 24\right)\cdot 101^{4} + \left(98 a + 33\right)\cdot 101^{5} + \left(47 a + 25\right)\cdot 101^{6} + \left(80 a + 93\right)\cdot 101^{7} + \left(29 a + 40\right)\cdot 101^{8} + \left(44 a + 28\right)\cdot 101^{9} + \left(68 a + 64\right)\cdot 101^{10} + \left(65 a + 62\right)\cdot 101^{11} + \left(24 a + 86\right)\cdot 101^{12} + \left(82 a + 38\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 3 + \left(12 a + 37\right)\cdot 101 + \left(5 a + 65\right)\cdot 101^{2} + \left(62 a + 5\right)\cdot 101^{3} + \left(93 a + 47\right)\cdot 101^{4} + \left(48 a + 65\right)\cdot 101^{5} + \left(14 a + 39\right)\cdot 101^{6} + \left(80 a + 71\right)\cdot 101^{7} + \left(61 a + 74\right)\cdot 101^{8} + \left(a + 27\right)\cdot 101^{9} + \left(40 a + 52\right)\cdot 101^{10} + \left(61 a + 87\right)\cdot 101^{11} + \left(95 a + 87\right)\cdot 101^{12} + \left(23 a + 9\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$
$r_{ 6 }$ $=$ $ 71 a + 2 + \left(93 a + 47\right)\cdot 101 + \left(19 a + 55\right)\cdot 101^{2} + \left(49 a + 27\right)\cdot 101^{3} + \left(4 a + 55\right)\cdot 101^{4} + \left(2 a + 29\right)\cdot 101^{5} + \left(53 a + 17\right)\cdot 101^{6} + \left(20 a + 64\right)\cdot 101^{7} + \left(71 a + 79\right)\cdot 101^{8} + \left(56 a + 74\right)\cdot 101^{9} + \left(32 a + 91\right)\cdot 101^{10} + \left(35 a + 54\right)\cdot 101^{11} + \left(76 a + 18\right)\cdot 101^{12} + \left(18 a + 40\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$
$r_{ 7 }$ $=$ $ 60 a + 9 + \left(83 a + 67\right)\cdot 101 + \left(39 a + 41\right)\cdot 101^{2} + \left(63 a + 97\right)\cdot 101^{3} + \left(93 a + 100\right)\cdot 101^{4} + \left(41 a + 67\right)\cdot 101^{5} + \left(48 a + 27\right)\cdot 101^{6} + \left(20 a + 37\right)\cdot 101^{7} + \left(a + 69\right)\cdot 101^{8} + \left(57 a + 16\right)\cdot 101^{9} + \left(20 a + 95\right)\cdot 101^{10} + \left(4 a + 25\right)\cdot 101^{11} + \left(34 a + 14\right)\cdot 101^{12} + \left(82 a + 13\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$
$r_{ 8 }$ $=$ $ 41 a + 47 + \left(17 a + 38\right)\cdot 101 + \left(61 a + 16\right)\cdot 101^{2} + \left(37 a + 8\right)\cdot 101^{3} + \left(7 a + 8\right)\cdot 101^{4} + \left(59 a + 41\right)\cdot 101^{5} + \left(52 a + 78\right)\cdot 101^{6} + \left(80 a + 70\right)\cdot 101^{7} + \left(99 a + 53\right)\cdot 101^{8} + \left(43 a + 41\right)\cdot 101^{9} + \left(80 a + 19\right)\cdot 101^{10} + \left(96 a + 22\right)\cdot 101^{11} + \left(66 a + 45\right)\cdot 101^{12} + \left(18 a + 5\right)\cdot 101^{13} +O\left(101^{ 14 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,5)(4,7)$
$(1,7,5,4)(2,8,3,6)$
$(2,3)(4,7)$
$(1,5)(6,8)$
$(1,5)(2,7,3,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,5)(2,3)(4,7)(6,8)$$-4$
$2$$2$$(1,5)(6,8)$$0$
$2$$2$$(1,6)(2,4)(3,7)(5,8)$$0$
$2$$2$$(1,8)(2,4)(3,7)(5,6)$$0$
$4$$2$$(1,5)(4,7)$$0$
$4$$2$$(1,8)(2,3)(4,7)(5,6)$$-2$
$4$$2$$(1,6)(5,8)$$2$
$4$$2$$(1,7)(2,6)(3,8)(4,5)$$0$
$4$$2$$(1,4)(2,6)(3,8)(5,7)$$0$
$4$$4$$(1,7,5,4)(2,8,3,6)$$0$
$4$$4$$(1,4,5,7)(2,8,3,6)$$0$
$4$$4$$(1,6,5,8)(2,4,3,7)$$0$
$8$$4$$(1,3,6,7)(2,8,4,5)$$0$
$8$$4$$(1,6,5,8)(2,3)$$0$
$8$$4$$(1,2,8,4)(3,6,7,5)$$0$
The blue line marks the conjugacy class containing complex conjugation.