Properties

Label 4.5_17881e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 17881^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$1598650805= 5 \cdot 17881^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 2 x^{3} + 12 x^{2} + 3 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 24\cdot 31 + 24\cdot 31^{2} + 8\cdot 31^{3} + 27\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 9 + \left(30 a + 14\right)\cdot 31 + \left(8 a + 15\right)\cdot 31^{2} + \left(24 a + 22\right)\cdot 31^{3} + 12\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 16 a + 8 + 29\cdot 31 + \left(22 a + 2\right)\cdot 31^{2} + 6 a\cdot 31^{3} + \left(30 a + 21\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 22 a + 8 + \left(24 a + 19\right)\cdot 31 + \left(7 a + 29\right)\cdot 31^{2} + \left(5 a + 25\right)\cdot 31^{3} + \left(30 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 21 + \left(6 a + 15\right)\cdot 31 + \left(23 a + 20\right)\cdot 31^{2} + \left(25 a + 28\right)\cdot 31^{3} + 17\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 21 + 20\cdot 31 + 30\cdot 31^{2} + 6\cdot 31^{3} + 20\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,4)(2,5)(3,6)$$2$
$6$$2$$(2,3)$$0$
$9$$2$$(2,3)(5,6)$$0$
$4$$3$$(1,2,3)$$-2$
$4$$3$$(1,2,3)(4,5,6)$$1$
$18$$4$$(1,4)(2,6,3,5)$$0$
$12$$6$$(1,5,2,6,3,4)$$-1$
$12$$6$$(2,3)(4,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.