Properties

Label 4.5_1511e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 1511^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$11415605= 5 \cdot 1511^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 4 x^{3} + 2 x^{2} + 2 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 20 a + 15 + \left(6 a + 18\right)\cdot 31 + \left(14 a + 12\right)\cdot 31^{2} + \left(24 a + 16\right)\cdot 31^{3} + \left(10 a + 11\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 24 + \left(24 a + 11\right)\cdot 31 + \left(16 a + 3\right)\cdot 31^{2} + \left(6 a + 20\right)\cdot 31^{3} + \left(20 a + 8\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 + 7\cdot 31 + 27\cdot 31^{2} + 25\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 12 a + 10 + 9 a\cdot 31 + \left(11 a + 21\right)\cdot 31^{2} + \left(15 a + 14\right)\cdot 31^{3} + \left(12 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 6 + 17\cdot 31 + 25\cdot 31^{2} + 12\cdot 31^{3} + 9\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 19 a + 3 + \left(21 a + 7\right)\cdot 31 + \left(19 a + 3\right)\cdot 31^{2} + \left(15 a + 3\right)\cdot 31^{3} + \left(18 a + 16\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,4)(2,5)(3,6)$
$(4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(2,3)(5,6)$ $0$
$4$ $3$ $(1,2,3)(4,5,6)$ $1$
$4$ $3$ $(1,2,3)$ $-2$
$18$ $4$ $(1,4)(2,6,3,5)$ $0$
$12$ $6$ $(1,5,2,6,3,4)$ $-1$
$12$ $6$ $(2,3)(4,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.