Properties

Label 4.5_1453.5t5.1
Dimension 4
Group $S_5$
Conductor $ 5 \cdot 1453 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$7265= 5 \cdot 1453 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + x^{3} + 2 x^{2} - x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 503 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 30 + 249\cdot 503 + 298\cdot 503^{2} + 57\cdot 503^{3} + 191\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 52 + 215\cdot 503 + 470\cdot 503^{2} + 361\cdot 503^{3} + 60\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 295 + 274\cdot 503 + 186\cdot 503^{2} + 344\cdot 503^{3} + 258\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 297 + 118\cdot 503 + 197\cdot 503^{2} + 380\cdot 503^{3} + 84\cdot 503^{4} +O\left(503^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 333 + 148\cdot 503 + 356\cdot 503^{2} + 364\cdot 503^{3} + 410\cdot 503^{4} +O\left(503^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.