Properties

Label 4.5_139e2_151e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 139^{2} \cdot 151^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$2202690605= 5 \cdot 139^{2} \cdot 151^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 5 x^{3} + 13 x^{2} - 6 x - 4 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 19 a + 26 + \left(6 a + 5\right)\cdot 29 + \left(25 a + 23\right)\cdot 29^{2} + \left(17 a + 23\right)\cdot 29^{3} + \left(26 a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 8 + 23\cdot 29 + 13\cdot 29^{2} + 11\cdot 29^{3} + 3\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 2 a + 23 + \left(26 a + 21\right)\cdot 29 + \left(25 a + 1\right)\cdot 29^{2} + \left(21 a + 10\right)\cdot 29^{3} + \left(26 a + 22\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 27 a + 4 + \left(2 a + 5\right)\cdot 29 + \left(3 a + 18\right)\cdot 29^{2} + \left(7 a + 6\right)\cdot 29^{3} + \left(2 a + 18\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 10 a + 5 + \left(22 a + 20\right)\cdot 29 + \left(3 a + 26\right)\cdot 29^{2} + 11 a\cdot 29^{3} + \left(2 a + 14\right)\cdot 29^{4} +O\left(29^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 + 10\cdot 29 + 3\cdot 29^{2} + 5\cdot 29^{3} + 14\cdot 29^{4} +O\left(29^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2)(3,5)(4,6)$
$(1,5)$
$(1,5,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $2$
$6$ $2$ $(2,3)$ $0$
$9$ $2$ $(1,5)(2,3)$ $0$
$4$ $3$ $(1,5,6)(2,3,4)$ $1$
$4$ $3$ $(2,3,4)$ $-2$
$18$ $4$ $(1,2,5,3)(4,6)$ $0$
$12$ $6$ $(1,2,5,3,6,4)$ $-1$
$12$ $6$ $(1,5,6)(2,3)$ $0$
The blue line marks the conjugacy class containing complex conjugation.