Properties

Label 4.5_11e4_31e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 11^{4} \cdot 31^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$70350005= 5 \cdot 11^{4} \cdot 31^{2} $
Artin number field: Splitting field of $f= x^{6} - 2 x^{5} + x^{4} - 3 x^{3} - 2 x^{2} + 5 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$: $ x^{2} + 18 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 4 a + 13 + \left(17 a + 18\right)\cdot 19 + \left(12 a + 10\right)\cdot 19^{2} + \left(17 a + 10\right)\cdot 19^{3} + \left(13 a + 4\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 15 a + 9 + \left(9 a + 17\right)\cdot 19 + \left(5 a + 4\right)\cdot 19^{2} + \left(16 a + 6\right)\cdot 19^{3} + \left(13 a + 13\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 + 6\cdot 19 + 19^{2} + 12\cdot 19^{3} + 13\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 15 a + 17 + \left(a + 12\right)\cdot 19 + \left(6 a + 6\right)\cdot 19^{2} + \left(a + 15\right)\cdot 19^{3} + 5 a\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 4 a + 5 + \left(9 a + 12\right)\cdot 19 + 13 a\cdot 19^{2} + \left(2 a + 17\right)\cdot 19^{3} + \left(5 a + 10\right)\cdot 19^{4} +O\left(19^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 6 + 8\cdot 19 + 13\cdot 19^{2} + 14\cdot 19^{3} + 13\cdot 19^{4} +O\left(19^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,2)(3,5)(4,6)$$2$
$6$$2$$(1,3)$$0$
$9$$2$$(1,3)(2,5)$$0$
$4$$3$$(1,3,4)$$-2$
$4$$3$$(1,3,4)(2,5,6)$$1$
$18$$4$$(1,5,3,2)(4,6)$$0$
$12$$6$$(1,5,3,6,4,2)$$-1$
$12$$6$$(1,3)(2,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.