Properties

Label 4.5_11e2_29e2.8t29.4c1
Dimension 4
Group $(((C_4 \times C_2): C_2):C_2):C_2$
Conductor $ 5 \cdot 11^{2} \cdot 29^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$(((C_4 \times C_2): C_2):C_2):C_2$
Conductor:$508805= 5 \cdot 11^{2} \cdot 29^{2} $
Artin number field: Splitting field of $f= x^{8} - 3 x^{7} + 6 x^{6} - 11 x^{5} + x^{4} - 23 x^{3} + 44 x^{2} + 49 x + 71 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $(((C_4 \times C_2): C_2):C_2):C_2$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 929 }$ to precision 8.
Roots:
$r_{ 1 }$ $=$ $ 147 + 421\cdot 929 + 745\cdot 929^{2} + 363\cdot 929^{3} + 775\cdot 929^{4} + 578\cdot 929^{5} + 889\cdot 929^{6} + 605\cdot 929^{7} +O\left(929^{ 8 }\right)$
$r_{ 2 }$ $=$ $ 232 + 875\cdot 929 + 636\cdot 929^{2} + 831\cdot 929^{3} + 301\cdot 929^{4} + 887\cdot 929^{5} + 404\cdot 929^{6} + 414\cdot 929^{7} +O\left(929^{ 8 }\right)$
$r_{ 3 }$ $=$ $ 308 + 603\cdot 929 + 833\cdot 929^{2} + 312\cdot 929^{3} + 402\cdot 929^{4} + 207\cdot 929^{5} + 188\cdot 929^{6} + 816\cdot 929^{7} +O\left(929^{ 8 }\right)$
$r_{ 4 }$ $=$ $ 312 + 347\cdot 929 + 439\cdot 929^{2} + 709\cdot 929^{3} + 748\cdot 929^{4} + 789\cdot 929^{5} + 211\cdot 929^{6} + 433\cdot 929^{7} +O\left(929^{ 8 }\right)$
$r_{ 5 }$ $=$ $ 439 + 628\cdot 929 + 706\cdot 929^{2} + 896\cdot 929^{3} + 842\cdot 929^{4} + 425\cdot 929^{5} + 207\cdot 929^{6} + 749\cdot 929^{7} +O\left(929^{ 8 }\right)$
$r_{ 6 }$ $=$ $ 625 + 202\cdot 929 + 67\cdot 929^{2} + 507\cdot 929^{3} + 643\cdot 929^{4} + 142\cdot 929^{5} + 499\cdot 929^{6} + 717\cdot 929^{7} +O\left(929^{ 8 }\right)$
$r_{ 7 }$ $=$ $ 767 + 420\cdot 929 + 104\cdot 929^{2} + 686\cdot 929^{3} + 80\cdot 929^{4} + 349\cdot 929^{5} + 694\cdot 929^{6} + 846\cdot 929^{7} +O\left(929^{ 8 }\right)$
$r_{ 8 }$ $=$ $ 889 + 216\cdot 929 + 182\cdot 929^{2} + 337\cdot 929^{3} + 849\cdot 929^{4} + 334\cdot 929^{5} + 620\cdot 929^{6} + 61\cdot 929^{7} +O\left(929^{ 8 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(4,6)$
$(1,5,2,8)(3,6,7,4)$
$(1,2)(5,8)$
$(1,3,2,7)(5,8)$
$(3,7)(5,8)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character value
$1$$1$$()$$4$
$1$$2$$(1,2)(3,7)(4,6)(5,8)$$-4$
$2$$2$$(1,3)(2,7)(4,5)(6,8)$$0$
$2$$2$$(4,6)(5,8)$$0$
$2$$2$$(1,7)(2,3)(4,5)(6,8)$$0$
$4$$2$$(1,2)(4,6)$$0$
$4$$2$$(1,3)(2,7)(4,6)(5,8)$$2$
$4$$2$$(1,6)(2,4)(3,5)(7,8)$$0$
$4$$2$$(1,5)(2,8)(3,4)(6,7)$$0$
$4$$2$$(4,8)(5,6)$$-2$
$4$$4$$(1,5,2,8)(3,6,7,4)$$0$
$4$$4$$(1,8,2,5)(3,6,7,4)$$0$
$4$$4$$(1,3,2,7)(4,8,6,5)$$0$
$8$$4$$(1,8,3,6)(2,5,7,4)$$0$
$8$$4$$(3,7)(4,8,6,5)$$0$
$8$$4$$(1,8,7,6)(2,5,3,4)$$0$
The blue line marks the conjugacy class containing complex conjugation.