Properties

Label 4.5_11e2_109e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 11^{2} \cdot 109^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$7188005= 5 \cdot 11^{2} \cdot 109^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 2 x^{3} + x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 20 + 11\cdot 31 + 27\cdot 31^{2} + 15\cdot 31^{3} + 15\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 + 9\cdot 31 + 4\cdot 31^{2} + 23\cdot 31^{3} + 15\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 a + 22 + \left(20 a + 10\right)\cdot 31 + \left(26 a + 12\right)\cdot 31^{2} + \left(10 a + 6\right)\cdot 31^{3} + \left(19 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 9 a + 12 + \left(6 a + 23\right)\cdot 31 + \left(22 a + 13\right)\cdot 31^{2} + \left(20 a + 13\right)\cdot 31^{3} + \left(11 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 21 a + 11 + \left(10 a + 10\right)\cdot 31 + \left(4 a + 14\right)\cdot 31^{2} + \left(20 a + 1\right)\cdot 31^{3} + \left(11 a + 6\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 22 a + 30 + \left(24 a + 26\right)\cdot 31 + \left(8 a + 20\right)\cdot 31^{2} + \left(10 a + 1\right)\cdot 31^{3} + \left(19 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,6)$
$(1,2)(3,4)(5,6)$
$(1,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,4,6)$ $-2$
$4$ $3$ $(1,4,6)(2,3,5)$ $1$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,3,4,5,6,2)$ $-1$
$12$ $6$ $(1,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.