Properties

Label 4.5_10501e2.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 5 \cdot 10501^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$551355005= 5 \cdot 10501^{2} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 7 x^{4} + 7 x^{3} + 12 x^{2} - 12 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 41 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 41 }$: $ x^{2} + 38 x + 6 $
Roots:
$r_{ 1 }$ $=$ $ 27 + 30\cdot 41 + 38\cdot 41^{2} + 37\cdot 41^{3} + 9\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 a + 24 + \left(31 a + 25\right)\cdot 41 + \left(38 a + 9\right)\cdot 41^{2} + \left(28 a + 3\right)\cdot 41^{3} + \left(37 a + 8\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 a + 28 + \left(38 a + 7\right)\cdot 41 + \left(28 a + 7\right)\cdot 41^{2} + \left(11 a + 37\right)\cdot 41^{3} + \left(26 a + 5\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 37 a + 40 + \left(2 a + 35\right)\cdot 41 + \left(12 a + 14\right)\cdot 41^{2} + \left(29 a + 2\right)\cdot 41^{3} + \left(14 a + 32\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 9 a + 38 + \left(9 a + 6\right)\cdot 41 + \left(2 a + 12\right)\cdot 41^{2} + \left(12 a + 10\right)\cdot 41^{3} + \left(3 a + 10\right)\cdot 41^{4} +O\left(41^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 + 16\cdot 41 + 40\cdot 41^{2} + 31\cdot 41^{3} + 15\cdot 41^{4} +O\left(41^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$2$
$6$$2$$(2,5)$$0$
$9$$2$$(2,5)(4,6)$$0$
$4$$3$$(1,2,5)$$-2$
$4$$3$$(1,2,5)(3,4,6)$$1$
$18$$4$$(1,3)(2,6,5,4)$$0$
$12$$6$$(1,4,2,6,5,3)$$-1$
$12$$6$$(2,5)(3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.