Basic invariants
Dimension: | $4$ |
Group: | $S_5$ |
Conductor: | \(5753\)\(\medspace = 11 \cdot 523 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 5.1.5753.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_5$ |
Parity: | even |
Determinant: | 1.5753.2t1.a.a |
Projective image: | $S_5$ |
Projective stem field: | Galois closure of 5.1.5753.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{5} - x^{4} - x^{3} + 2x^{2} - x + 1 \) . |
The roots of $f$ are computed in $\Q_{ 467 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 103 + 452\cdot 467 + 304\cdot 467^{2} + 160\cdot 467^{3} + 237\cdot 467^{4} +O(467^{5})\) |
$r_{ 2 }$ | $=$ | \( 209 + 205\cdot 467 + 99\cdot 467^{2} + 299\cdot 467^{3} + 120\cdot 467^{4} +O(467^{5})\) |
$r_{ 3 }$ | $=$ | \( 256 + 414\cdot 467 + 251\cdot 467^{2} + 329\cdot 467^{3} + 236\cdot 467^{4} +O(467^{5})\) |
$r_{ 4 }$ | $=$ | \( 397 + 338\cdot 467 + 360\cdot 467^{2} + 288\cdot 467^{3} + 198\cdot 467^{4} +O(467^{5})\) |
$r_{ 5 }$ | $=$ | \( 437 + 456\cdot 467 + 383\cdot 467^{2} + 322\cdot 467^{3} + 140\cdot 467^{4} +O(467^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $4$ | |
$10$ | $2$ | $(1,2)$ | $2$ | |
$15$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$20$ | $3$ | $(1,2,3)$ | $1$ | |
$30$ | $4$ | $(1,2,3,4)$ | $0$ | |
$24$ | $5$ | $(1,2,3,4,5)$ | $-1$ | |
$20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |