Properties

Label 4.563e2.8t23.2
Dimension 4
Group $\textrm{GL(2,3)}$
Conductor $ 563^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\textrm{GL(2,3)}$
Conductor:$316969= 563^{2} $
Artin number field: Splitting field of $f= x^{8} - x^{7} - 2 x^{6} + 6 x^{5} - 11 x^{3} + 5 x^{2} + 8 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $\textrm{GL(2,3)}$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 6.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: $ x^{2} + 24 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 11 a + 11 + \left(4 a + 9\right)\cdot 29 + \left(18 a + 22\right)\cdot 29^{2} + \left(25 a + 10\right)\cdot 29^{3} + \left(20 a + 11\right)\cdot 29^{4} + \left(17 a + 18\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 2 }$ $=$ $ 13 a + \left(6 a + 22\right)\cdot 29 + 26 a\cdot 29^{2} + \left(19 a + 27\right)\cdot 29^{3} + \left(a + 4\right)\cdot 29^{4} + 5 a\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 3 }$ $=$ $ 18 a + 8 + \left(24 a + 20\right)\cdot 29 + \left(10 a + 21\right)\cdot 29^{2} + \left(3 a + 4\right)\cdot 29^{3} + \left(8 a + 3\right)\cdot 29^{4} + \left(11 a + 28\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 4 }$ $=$ $ 16 a + 7 + \left(22 a + 12\right)\cdot 29 + \left(2 a + 9\right)\cdot 29^{2} + \left(9 a + 13\right)\cdot 29^{3} + \left(27 a + 22\right)\cdot 29^{4} + \left(23 a + 23\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 5 }$ $=$ $ 5 + 10\cdot 29 + 23\cdot 29^{2} + 22\cdot 29^{3} + 6\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 6 }$ $=$ $ 10 + 8\cdot 29 + 20\cdot 29^{2} + 20\cdot 29^{3} + 19\cdot 29^{4} + 17\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 7 }$ $=$ $ 12 a + 8 + \left(20 a + 15\right)\cdot 29 + \left(9 a + 9\right)\cdot 29^{2} + \left(13 a + 23\right)\cdot 29^{3} + \left(9 a + 9\right)\cdot 29^{4} + \left(24 a + 27\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$
$r_{ 8 }$ $=$ $ 17 a + 10 + \left(8 a + 18\right)\cdot 29 + \left(19 a + 8\right)\cdot 29^{2} + \left(15 a + 22\right)\cdot 29^{3} + \left(19 a + 14\right)\cdot 29^{4} + \left(4 a + 23\right)\cdot 29^{5} +O\left(29^{ 6 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 8 }$

Cycle notation
$(1,2)(3,8)(4,7)$
$(1,4,8)(2,3,7)$
$(1,7)(2,4)(3,8)(5,6)$
$(1,3,7,8)(2,5,4,6)$
$(1,2,7,4)(3,6,8,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 8 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$1$ $2$ $(1,7)(2,4)(3,8)(5,6)$ $-4$
$12$ $2$ $(1,2)(3,8)(4,7)$ $0$
$8$ $3$ $(1,4,8)(2,3,7)$ $1$
$6$ $4$ $(1,3,7,8)(2,5,4,6)$ $0$
$8$ $6$ $(1,6,2,7,5,4)(3,8)$ $-1$
$6$ $8$ $(1,8,2,5,7,3,4,6)$ $0$
$6$ $8$ $(1,3,2,6,7,8,4,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.