Basic invariants
Dimension: | $4$ |
Group: | $C_3^2:D_4$ |
Conductor: | \(5517\)\(\medspace = 3^{2} \cdot 613 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 6.0.16551.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $C_3^2:D_4$ |
Parity: | even |
Determinant: | 1.613.2t1.a.a |
Projective image: | $\SOPlus(4,2)$ |
Projective stem field: | Galois closure of 6.0.16551.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{6} - x^{5} - x^{4} + 3x^{3} - 2x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 19 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 19 }$:
\( x^{2} + 18x + 2 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 18 a + 6 + 13\cdot 19 + \left(8 a + 15\right)\cdot 19^{2} + \left(2 a + 10\right)\cdot 19^{3} + \left(9 a + 3\right)\cdot 19^{4} +O(19^{5})\)
$r_{ 2 }$ |
$=$ |
\( 16 + 5\cdot 19 + 7\cdot 19^{2} + 3\cdot 19^{3} + 6\cdot 19^{4} +O(19^{5})\)
| $r_{ 3 }$ |
$=$ |
\( a + 5 + \left(18 a + 15\right)\cdot 19 + \left(10 a + 3\right)\cdot 19^{2} + \left(16 a + 5\right)\cdot 19^{3} + \left(9 a + 10\right)\cdot 19^{4} +O(19^{5})\)
| $r_{ 4 }$ |
$=$ |
\( 18 a + 11 + \left(4 a + 1\right)\cdot 19 + \left(4 a + 17\right)\cdot 19^{2} + \left(16 a + 14\right)\cdot 19^{3} + 7 a\cdot 19^{4} +O(19^{5})\)
| $r_{ 5 }$ |
$=$ |
\( a + 10 + \left(14 a + 7\right)\cdot 19 + \left(14 a + 16\right)\cdot 19^{2} + \left(2 a + 7\right)\cdot 19^{3} + \left(11 a + 11\right)\cdot 19^{4} +O(19^{5})\)
| $r_{ 6 }$ |
$=$ |
\( 10 + 13\cdot 19 + 15\cdot 19^{2} + 14\cdot 19^{3} + 5\cdot 19^{4} +O(19^{5})\)
| |
Generators of the action on the roots $r_1, \ldots, r_{ 6 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 6 }$ | Character value |
$1$ | $1$ | $()$ | $4$ |
$6$ | $2$ | $(1,4)(2,5)(3,6)$ | $0$ |
$6$ | $2$ | $(2,3)$ | $2$ |
$9$ | $2$ | $(2,3)(5,6)$ | $0$ |
$4$ | $3$ | $(1,2,3)(4,5,6)$ | $-2$ |
$4$ | $3$ | $(1,2,3)$ | $1$ |
$18$ | $4$ | $(1,4)(2,6,3,5)$ | $0$ |
$12$ | $6$ | $(1,5,2,6,3,4)$ | $0$ |
$12$ | $6$ | $(2,3)(4,5,6)$ | $-1$ |
The blue line marks the conjugacy class containing complex conjugation.