Basic invariants
Dimension: | $4$ |
Group: | $S_5$ |
Conductor: | \(5501\) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 5.1.5501.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_5$ |
Parity: | even |
Determinant: | 1.5501.2t1.a.a |
Projective image: | $S_5$ |
Projective stem field: | Galois closure of 5.1.5501.1 |
Defining polynomial
$f(x)$ | $=$ |
\( x^{5} - 2x^{4} + 2x^{2} - x + 1 \)
|
The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$:
\( x^{2} + 45x + 5 \)
Roots:
$r_{ 1 }$ | $=$ |
\( 25 + 19\cdot 47 + 46\cdot 47^{2} + 37\cdot 47^{3} + 23\cdot 47^{4} +O(47^{5})\)
|
$r_{ 2 }$ | $=$ |
\( 9 a + 14 + \left(41 a + 8\right)\cdot 47 + \left(38 a + 2\right)\cdot 47^{2} + \left(44 a + 41\right)\cdot 47^{3} + \left(36 a + 3\right)\cdot 47^{4} +O(47^{5})\)
|
$r_{ 3 }$ | $=$ |
\( 20 a + 16 + \left(45 a + 27\right)\cdot 47 + \left(40 a + 8\right)\cdot 47^{2} + \left(a + 27\right)\cdot 47^{3} + 17 a\cdot 47^{4} +O(47^{5})\)
|
$r_{ 4 }$ | $=$ |
\( 27 a + 9 + \left(a + 4\right)\cdot 47 + \left(6 a + 45\right)\cdot 47^{2} + \left(45 a + 36\right)\cdot 47^{3} + \left(29 a + 32\right)\cdot 47^{4} +O(47^{5})\)
|
$r_{ 5 }$ | $=$ |
\( 38 a + 32 + \left(5 a + 34\right)\cdot 47 + \left(8 a + 38\right)\cdot 47^{2} + \left(2 a + 44\right)\cdot 47^{3} + \left(10 a + 32\right)\cdot 47^{4} +O(47^{5})\)
|
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $4$ | |
$10$ | $2$ | $(1,2)$ | $2$ | |
$15$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$20$ | $3$ | $(1,2,3)$ | $1$ | |
$30$ | $4$ | $(1,2,3,4)$ | $0$ | |
$24$ | $5$ | $(1,2,3,4,5)$ | $-1$ | |
$20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |