Properties

Label 4.53_4241.5t5.1
Dimension 4
Group $S_5$
Conductor $ 53 \cdot 4241 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$224773= 53 \cdot 4241 $
Artin number field: Splitting field of $f= x^{5} - x^{4} - 6 x^{3} + 2 x^{2} + 7 x + 2 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 23 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 23 }$: $ x^{2} + 21 x + 5 $
Roots:
$r_{ 1 }$ $=$ $ 10 + 6\cdot 23 + 23^{2} + 19\cdot 23^{3} + 21\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 14 a + 2 + \left(6 a + 7\right)\cdot 23 + \left(10 a + 11\right)\cdot 23^{3} + \left(4 a + 19\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 7 + \left(16 a + 6\right)\cdot 23 + \left(22 a + 17\right)\cdot 23^{2} + \left(12 a + 7\right)\cdot 23^{3} + \left(18 a + 18\right)\cdot 23^{4} +O\left(23^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 + 17\cdot 23 + 3\cdot 23^{2} +O\left(23^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 15 + 8\cdot 23 + 8\cdot 23^{3} + 9\cdot 23^{4} +O\left(23^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.