Basic invariants
Dimension: | $4$ |
Group: | $S_5$ |
Conductor: | \(5025\)\(\medspace = 3 \cdot 5^{2} \cdot 67 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 5.1.5025.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_5$ |
Parity: | even |
Determinant: | 1.201.2t1.a.a |
Projective image: | $S_5$ |
Projective stem field: | Galois closure of 5.1.5025.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{5} - x^{4} - x^{2} + x + 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: \( x^{2} + 69x + 7 \)
Roots:
$r_{ 1 }$ | $=$ | \( 42 a + 34 + \left(31 a + 23\right)\cdot 71 + \left(13 a + 44\right)\cdot 71^{2} + \left(68 a + 53\right)\cdot 71^{3} + \left(39 a + 12\right)\cdot 71^{4} +O(71^{5})\) |
$r_{ 2 }$ | $=$ | \( 32 + 12\cdot 71 + 6\cdot 71^{2} + 68\cdot 71^{3} + 58\cdot 71^{4} +O(71^{5})\) |
$r_{ 3 }$ | $=$ | \( 29 a + 47 + \left(39 a + 44\right)\cdot 71 + \left(57 a + 39\right)\cdot 71^{2} + \left(2 a + 34\right)\cdot 71^{3} + \left(31 a + 24\right)\cdot 71^{4} +O(71^{5})\) |
$r_{ 4 }$ | $=$ | \( 57 + 38\cdot 71^{2} + 60\cdot 71^{3} + 27\cdot 71^{4} +O(71^{5})\) |
$r_{ 5 }$ | $=$ | \( 44 + 60\cdot 71 + 13\cdot 71^{2} + 67\cdot 71^{3} + 17\cdot 71^{4} +O(71^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $4$ | |
$10$ | $2$ | $(1,2)$ | $2$ | |
$15$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$20$ | $3$ | $(1,2,3)$ | $1$ | |
$30$ | $4$ | $(1,2,3,4)$ | $0$ | |
$24$ | $5$ | $(1,2,3,4,5)$ | $-1$ | |
$20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |