Properties

Label 4.5025.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $5025$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(5025\)\(\medspace = 3 \cdot 5^{2} \cdot 67 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.5025.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.201.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.5025.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} - x^{2} + x + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 71 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 71 }$: \( x^{2} + 69x + 7 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 42 a + 34 + \left(31 a + 23\right)\cdot 71 + \left(13 a + 44\right)\cdot 71^{2} + \left(68 a + 53\right)\cdot 71^{3} + \left(39 a + 12\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 32 + 12\cdot 71 + 6\cdot 71^{2} + 68\cdot 71^{3} + 58\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 29 a + 47 + \left(39 a + 44\right)\cdot 71 + \left(57 a + 39\right)\cdot 71^{2} + \left(2 a + 34\right)\cdot 71^{3} + \left(31 a + 24\right)\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 57 + 38\cdot 71^{2} + 60\cdot 71^{3} + 27\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 44 + 60\cdot 71 + 13\cdot 71^{2} + 67\cdot 71^{3} + 17\cdot 71^{4} +O(71^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$