Properties

Label 4.4897.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $4897$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(4897\)\(\medspace = 59 \cdot 83 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.4897.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.4897.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.4897.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} - x^{3} + x^{2} + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 + 12\cdot 13 + 3\cdot 13^{2} + 7\cdot 13^{3} + 9\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 4 a + 3 + 5 a\cdot 13 + 6\cdot 13^{2} + \left(11 a + 6\right)\cdot 13^{3} + \left(4 a + 4\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( a + 7 + \left(5 a + 10\right)\cdot 13 + \left(8 a + 5\right)\cdot 13^{2} + \left(8 a + 10\right)\cdot 13^{3} + \left(6 a + 7\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 9 a + 7 + \left(7 a + 1\right)\cdot 13 + \left(12 a + 1\right)\cdot 13^{2} + \left(a + 4\right)\cdot 13^{3} + \left(8 a + 11\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 12 a + 8 + \left(7 a + 1\right)\cdot 13 + \left(4 a + 9\right)\cdot 13^{2} + \left(4 a + 10\right)\cdot 13^{3} + \left(6 a + 5\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$