Properties

Label 4.4817408.12t34.b.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $4817408$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(4817408\)\(\medspace = 2^{9} \cdot 97^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.2.49664.1
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: even
Determinant: 1.8.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.2.49664.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 2x^{5} + 3x^{4} - 2x^{3} - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 47 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 47 }$: \( x^{2} + 45x + 5 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 12 + 44\cdot 47 + 40\cdot 47^{2} + 2\cdot 47^{3} + 14\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 3 a + 35 + \left(41 a + 3\right)\cdot 47 + \left(21 a + 27\right)\cdot 47^{2} + \left(5 a + 46\right)\cdot 47^{3} + \left(27 a + 40\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 10 + 19\cdot 47 + 13\cdot 47^{2} + 11\cdot 47^{3} + 9\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 44 a + 41 + \left(5 a + 35\right)\cdot 47 + \left(25 a + 29\right)\cdot 47^{2} + \left(41 a + 35\right)\cdot 47^{3} + \left(19 a + 42\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 17 a + 29 + \left(18 a + 32\right)\cdot 47 + \left(3 a + 20\right)\cdot 47^{2} + \left(34 a + 13\right)\cdot 47^{3} + \left(13 a + 20\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 30 a + 16 + \left(28 a + 5\right)\cdot 47 + \left(43 a + 9\right)\cdot 47^{2} + \left(12 a + 31\right)\cdot 47^{3} + \left(33 a + 13\right)\cdot 47^{4} +O(47^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,2,4)$
$(1,3)(2,5)(4,6)$
$(1,2)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$-2$
$6$$2$$(2,4)$$0$
$9$$2$$(2,4)(5,6)$$0$
$4$$3$$(1,2,4)$$-2$
$4$$3$$(1,2,4)(3,5,6)$$1$
$18$$4$$(1,3)(2,6,4,5)$$0$
$12$$6$$(1,5,2,6,4,3)$$1$
$12$$6$$(2,4)(3,5,6)$$0$

The blue line marks the conjugacy class containing complex conjugation.