Properties

Label 4.4757.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $4757$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(4757\)\(\medspace = 67 \cdot 71 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.4757.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.4757.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.4757.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} + 2x^{3} - x^{2} + 2x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 4 a + 2 + \left(27 a + 11\right)\cdot 29 + \left(18 a + 9\right)\cdot 29^{2} + \left(11 a + 3\right)\cdot 29^{3} + 10\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 25 a + 22 + \left(a + 26\right)\cdot 29 + \left(10 a + 18\right)\cdot 29^{2} + \left(17 a + 13\right)\cdot 29^{3} + 28 a\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 9 + 15\cdot 29 + 4\cdot 29^{2} + 13\cdot 29^{3} + 17\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 24 a + 11 + \left(6 a + 26\right)\cdot 29 + \left(a + 12\right)\cdot 29^{2} + \left(10 a + 18\right)\cdot 29^{3} + \left(23 a + 19\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 5 a + 15 + \left(22 a + 7\right)\cdot 29 + \left(27 a + 12\right)\cdot 29^{2} + \left(18 a + 9\right)\cdot 29^{3} + \left(5 a + 10\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$