Properties

Label 4.4597.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $4597$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(4597\)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.4597.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.4597.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.4597.1

Defining polynomial

$f(x)$$=$ \( x^{5} + x^{3} - 2x^{2} - x - 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in $\Q_{ 353 }$ to precision 5.

Roots:
$r_{ 1 }$ $=$ \( 113 + 146\cdot 353 + 304\cdot 353^{2} + 348\cdot 353^{3} + 275\cdot 353^{4} +O(353^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 152 + 112\cdot 353 + 231\cdot 353^{2} + 243\cdot 353^{3} + 275\cdot 353^{4} +O(353^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 164 + 221\cdot 353 + 253\cdot 353^{2} + 199\cdot 353^{3} + 171\cdot 353^{4} +O(353^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 292 + 197\cdot 353 + 331\cdot 353^{2} + 273\cdot 353^{3} + 3\cdot 353^{4} +O(353^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 338 + 27\cdot 353 + 291\cdot 353^{2} + 345\cdot 353^{3} + 331\cdot 353^{4} +O(353^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$