Basic invariants
Dimension: | $4$ |
Group: | $S_5$ |
Conductor: | \(4549\) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 5.1.4549.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_5$ |
Parity: | even |
Determinant: | 1.4549.2t1.a.a |
Projective image: | $S_5$ |
Projective stem field: | Galois closure of 5.1.4549.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{5} - x^{4} + 2x^{3} - 2x^{2} - 1 \) . |
The roots of $f$ are computed in $\Q_{ 73 }$ to precision 5.
Roots:
$r_{ 1 }$ | $=$ | \( 14 + 38\cdot 73 + 40\cdot 73^{2} + 39\cdot 73^{3} + 34\cdot 73^{4} +O(73^{5})\) |
$r_{ 2 }$ | $=$ | \( 29 + 35\cdot 73 + 34\cdot 73^{2} + 41\cdot 73^{4} +O(73^{5})\) |
$r_{ 3 }$ | $=$ | \( 43 + 44\cdot 73 + 5\cdot 73^{2} + 21\cdot 73^{3} + 66\cdot 73^{4} +O(73^{5})\) |
$r_{ 4 }$ | $=$ | \( 63 + 64\cdot 73 + 25\cdot 73^{2} + 63\cdot 73^{3} + 46\cdot 73^{4} +O(73^{5})\) |
$r_{ 5 }$ | $=$ | \( 71 + 35\cdot 73 + 39\cdot 73^{2} + 21\cdot 73^{3} + 30\cdot 73^{4} +O(73^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $4$ | |
$10$ | $2$ | $(1,2)$ | $2$ | |
$15$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$20$ | $3$ | $(1,2,3)$ | $1$ | |
$30$ | $4$ | $(1,2,3,4)$ | $0$ | |
$24$ | $5$ | $(1,2,3,4,5)$ | $-1$ | |
$20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |