Basic invariants
Dimension: | $4$ |
Group: | $S_5$ |
Conductor: | \(4477\)\(\medspace = 11^{2} \cdot 37 \) |
Frobenius-Schur indicator: | $1$ |
Root number: | $1$ |
Artin stem field: | Galois closure of 5.1.4477.1 |
Galois orbit size: | $1$ |
Smallest permutation container: | $S_5$ |
Parity: | even |
Determinant: | 1.37.2t1.a.a |
Projective image: | $S_5$ |
Projective stem field: | Galois closure of 5.1.4477.1 |
Defining polynomial
$f(x)$ | $=$ | \( x^{5} + x^{3} + x - 1 \) . |
The roots of $f$ are computed in an extension of $\Q_{ 101 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 101 }$: \( x^{2} + 97x + 2 \)
Roots:
$r_{ 1 }$ | $=$ | \( 90 a + 50 + \left(29 a + 88\right)\cdot 101 + \left(89 a + 37\right)\cdot 101^{2} + \left(83 a + 87\right)\cdot 101^{3} + \left(36 a + 82\right)\cdot 101^{4} +O(101^{5})\) |
$r_{ 2 }$ | $=$ | \( 11 a + 6 + \left(71 a + 17\right)\cdot 101 + \left(11 a + 62\right)\cdot 101^{2} + \left(17 a + 30\right)\cdot 101^{3} + \left(64 a + 45\right)\cdot 101^{4} +O(101^{5})\) |
$r_{ 3 }$ | $=$ | \( 48 + 31\cdot 101 + 100\cdot 101^{2} + 32\cdot 101^{3} + 5\cdot 101^{4} +O(101^{5})\) |
$r_{ 4 }$ | $=$ | \( 72 a + 6 + \left(42 a + 84\right)\cdot 101 + \left(46 a + 80\right)\cdot 101^{2} + \left(83 a + 83\right)\cdot 101^{3} + \left(76 a + 73\right)\cdot 101^{4} +O(101^{5})\) |
$r_{ 5 }$ | $=$ | \( 29 a + 92 + \left(58 a + 81\right)\cdot 101 + \left(54 a + 21\right)\cdot 101^{2} + \left(17 a + 68\right)\cdot 101^{3} + \left(24 a + 95\right)\cdot 101^{4} +O(101^{5})\) |
Generators of the action on the roots $r_1, \ldots, r_{ 5 }$
Cycle notation |
Character values on conjugacy classes
Size | Order | Action on $r_1, \ldots, r_{ 5 }$ | Character value | Complex conjugation |
$1$ | $1$ | $()$ | $4$ | |
$10$ | $2$ | $(1,2)$ | $2$ | |
$15$ | $2$ | $(1,2)(3,4)$ | $0$ | ✓ |
$20$ | $3$ | $(1,2,3)$ | $1$ | |
$30$ | $4$ | $(1,2,3,4)$ | $0$ | |
$24$ | $5$ | $(1,2,3,4,5)$ | $-1$ | |
$20$ | $6$ | $(1,2,3)(4,5)$ | $-1$ |