Properties

Label 4.4429.5t5.a.a
Dimension $4$
Group $S_5$
Conductor $4429$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $S_5$
Conductor: \(4429\)\(\medspace = 43 \cdot 103 \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 5.1.4429.1
Galois orbit size: $1$
Smallest permutation container: $S_5$
Parity: even
Determinant: 1.4429.2t1.a.a
Projective image: $S_5$
Projective stem field: Galois closure of 5.1.4429.1

Defining polynomial

$f(x)$$=$ \( x^{5} - x^{4} + 2x^{3} - x^{2} + 1 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 29 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 29 }$: \( x^{2} + 24x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( 2 + 26\cdot 29 + 9\cdot 29^{2} + 8\cdot 29^{3} + 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 16 a + 10 + \left(10 a + 13\right)\cdot 29 + 12\cdot 29^{2} + \left(13 a + 24\right)\cdot 29^{3} + \left(20 a + 18\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 13 a + 3 + \left(18 a + 21\right)\cdot 29 + \left(28 a + 3\right)\cdot 29^{2} + \left(15 a + 2\right)\cdot 29^{3} + \left(8 a + 21\right)\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 5 + 8\cdot 29 + 15\cdot 29^{3} + 18\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 10 + 18\cdot 29 + 2\cdot 29^{2} + 8\cdot 29^{3} + 27\cdot 29^{4} +O(29^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$10$$2$$(1,2)$$2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$-1$