Properties

Label 4.223335163.12t34.a.a
Dimension $4$
Group $C_3^2:D_4$
Conductor $223335163$
Root number $1$
Indicator $1$

Related objects

Downloads

Learn more

Basic invariants

Dimension: $4$
Group: $C_3^2:D_4$
Conductor: \(223335163\)\(\medspace = 43^{3} \cdot 53^{2} \)
Frobenius-Schur indicator: $1$
Root number: $1$
Artin stem field: Galois closure of 6.0.4213871.1
Galois orbit size: $1$
Smallest permutation container: 12T34
Parity: odd
Determinant: 1.43.2t1.a.a
Projective image: $\SOPlus(4,2)$
Projective stem field: Galois closure of 6.0.4213871.1

Defining polynomial

$f(x)$$=$ \( x^{6} - 3x^{5} + 8x^{4} - 10x^{3} + 11x^{2} - 10x + 4 \) Copy content Toggle raw display .

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.

Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: \( x^{2} + 12x + 2 \) Copy content Toggle raw display

Roots:
$r_{ 1 }$ $=$ \( a + 11 + \left(12 a + 10\right)\cdot 13 + 4\cdot 13^{2} + 7 a\cdot 13^{3} + 8\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 2 }$ $=$ \( 12 a + 12 + 8\cdot 13 + \left(12 a + 6\right)\cdot 13^{2} + \left(5 a + 6\right)\cdot 13^{3} + \left(12 a + 1\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 3 }$ $=$ \( 3 a + \left(11 a + 10\right)\cdot 13 + \left(7 a + 12\right)\cdot 13^{2} + 2 a\cdot 13^{3} + \left(3 a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 4 }$ $=$ \( 10 a + 3 + \left(a + 5\right)\cdot 13 + \left(5 a + 9\right)\cdot 13^{2} + \left(10 a + 8\right)\cdot 13^{3} + \left(9 a + 6\right)\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 5 }$ $=$ \( 6 + 10\cdot 13 + 4\cdot 13^{2} + 6\cdot 13^{3} + 8\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display
$r_{ 6 }$ $=$ \( 10 + 6\cdot 13 + 3\cdot 13^{3} + 8\cdot 13^{4} +O(13^{5})\) Copy content Toggle raw display

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character valueComplex conjugation
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$-2$
$6$$2$$(4,6)$$0$
$9$$2$$(2,5)(4,6)$$0$
$4$$3$$(1,2,5)(3,4,6)$$1$
$4$$3$$(3,4,6)$$-2$
$18$$4$$(1,3)(2,4,5,6)$$0$
$12$$6$$(1,3,2,4,5,6)$$1$
$12$$6$$(1,2,5)(4,6)$$0$