Properties

Label 4.43_1439.5t5.1
Dimension 4
Group $S_5$
Conductor $ 43 \cdot 1439 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$61877= 43 \cdot 1439 $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 4 x^{3} - 4 x^{2} + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 379 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 6 + 326\cdot 379 + 277\cdot 379^{2} + 46\cdot 379^{3} + 171\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 113 + 344\cdot 379 + 308\cdot 379^{2} + 194\cdot 379^{3} + 61\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 146 + 289\cdot 379 + 18\cdot 379^{2} + 59\cdot 379^{3} + 333\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 246 + 145\cdot 379 + 96\cdot 379^{2} + 261\cdot 379^{3} + 246\cdot 379^{4} +O\left(379^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 248 + 31\cdot 379 + 56\cdot 379^{2} + 196\cdot 379^{3} + 324\cdot 379^{4} +O\left(379^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$10$ $2$ $(1,2)$ $2$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$30$ $4$ $(1,2,3,4)$ $0$
$24$ $5$ $(1,2,3,4,5)$ $-1$
$20$ $6$ $(1,2,3)(4,5)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.