Properties

Label 4.43_103.5t5.2c1
Dimension 4
Group $\PGL(2,5)$
Conductor $ 43 \cdot 103 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PGL(2,5)$
Conductor:$4429= 43 \cdot 103 $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 17 x^{4} + 121 x^{3} - 51 x^{2} - 208 x + 164 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.43_103.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 107 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 107 }$: $ x^{2} + 103 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 21 a + 43 + \left(22 a + 90\right)\cdot 107 + \left(98 a + 36\right)\cdot 107^{2} + \left(37 a + 43\right)\cdot 107^{3} + \left(30 a + 101\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 86 a + 20 + \left(84 a + 51\right)\cdot 107 + \left(8 a + 86\right)\cdot 107^{2} + \left(69 a + 96\right)\cdot 107^{3} + \left(76 a + 77\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 88 + 77\cdot 107 + 32\cdot 107^{2} + 29\cdot 107^{3} + 15\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 67 a + 83 + \left(86 a + 66\right)\cdot 107 + \left(23 a + 31\right)\cdot 107^{2} + \left(64 a + 9\right)\cdot 107^{3} + \left(57 a + 24\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 58 + 9\cdot 107 + 93\cdot 107^{2} + 6\cdot 107^{3} + 19\cdot 107^{4} +O\left(107^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 40 a + 30 + \left(20 a + 25\right)\cdot 107 + \left(83 a + 40\right)\cdot 107^{2} + \left(42 a + 28\right)\cdot 107^{3} + \left(49 a + 83\right)\cdot 107^{4} +O\left(107^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,5)(2,4)(3,6)$
$(1,2,6,4,3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,5)(2,4)(3,6)$$2$
$15$$2$$(1,5)(2,6)$$0$
$20$$3$$(1,6,3)(2,4,5)$$1$
$30$$4$$(1,2,5,6)$$0$
$24$$5$$(1,3,2,6,4)$$-1$
$20$$6$$(1,2,6,4,3,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.