Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 16.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 5\cdot 17 + 9\cdot 17^{2} + 10\cdot 17^{3} + 2\cdot 17^{4} + 15\cdot 17^{5} + 15\cdot 17^{6} + 2\cdot 17^{7} + 3\cdot 17^{8} + 4\cdot 17^{9} + 11\cdot 17^{10} + 4\cdot 17^{11} + 6\cdot 17^{12} + 2\cdot 17^{13} + 7\cdot 17^{14} + 17^{15} +O\left(17^{ 16 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 11 a + 3 + \left(9 a + 15\right)\cdot 17 + \left(5 a + 5\right)\cdot 17^{2} + \left(10 a + 9\right)\cdot 17^{3} + \left(13 a + 5\right)\cdot 17^{4} + \left(7 a + 12\right)\cdot 17^{5} + 7 a\cdot 17^{6} + \left(15 a + 3\right)\cdot 17^{7} + \left(14 a + 7\right)\cdot 17^{8} + \left(16 a + 5\right)\cdot 17^{9} + \left(11 a + 5\right)\cdot 17^{10} + \left(4 a + 1\right)\cdot 17^{11} + \left(13 a + 1\right)\cdot 17^{12} + 5\cdot 17^{13} + \left(7 a + 10\right)\cdot 17^{14} + \left(13 a + 4\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 7 a + 16 + \left(15 a + 5\right)\cdot 17 + \left(7 a + 7\right)\cdot 17^{2} + a\cdot 17^{3} + \left(11 a + 6\right)\cdot 17^{4} + \left(8 a + 5\right)\cdot 17^{5} + \left(6 a + 7\right)\cdot 17^{6} + 6 a\cdot 17^{7} + \left(9 a + 15\right)\cdot 17^{8} + \left(12 a + 9\right)\cdot 17^{9} + \left(11 a + 1\right)\cdot 17^{10} + \left(6 a + 16\right)\cdot 17^{11} + \left(13 a + 7\right)\cdot 17^{12} + \left(7 a + 5\right)\cdot 17^{13} + \left(11 a + 4\right)\cdot 17^{14} + 2\cdot 17^{15} +O\left(17^{ 16 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 6 a + 14 + \left(7 a + 13\right)\cdot 17 + \left(11 a + 1\right)\cdot 17^{2} + \left(6 a + 14\right)\cdot 17^{3} + \left(3 a + 8\right)\cdot 17^{4} + \left(9 a + 6\right)\cdot 17^{5} + 9 a\cdot 17^{6} + \left(a + 11\right)\cdot 17^{7} + \left(2 a + 6\right)\cdot 17^{8} + 7\cdot 17^{9} + 5 a\cdot 17^{10} + \left(12 a + 11\right)\cdot 17^{11} + \left(3 a + 9\right)\cdot 17^{12} + \left(16 a + 9\right)\cdot 17^{13} + \left(9 a + 16\right)\cdot 17^{14} + \left(3 a + 10\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 12 + 13\cdot 17 + 9\cdot 17^{2} + 5\cdot 17^{3} + 12\cdot 17^{4} + 8\cdot 17^{5} + 4\cdot 17^{6} + 16\cdot 17^{7} + 11\cdot 17^{9} + 14\cdot 17^{10} + 6\cdot 17^{11} + 11\cdot 17^{12} + 11\cdot 17^{13} + 4\cdot 17^{14} + 6\cdot 17^{15} +O\left(17^{ 16 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 10 a + 6 + \left(a + 14\right)\cdot 17 + \left(9 a + 16\right)\cdot 17^{2} + \left(15 a + 10\right)\cdot 17^{3} + \left(5 a + 15\right)\cdot 17^{4} + \left(8 a + 2\right)\cdot 17^{5} + \left(10 a + 5\right)\cdot 17^{6} + 10 a\cdot 17^{7} + \left(7 a + 1\right)\cdot 17^{8} + \left(4 a + 13\right)\cdot 17^{9} + 5 a\cdot 17^{10} + \left(10 a + 11\right)\cdot 17^{11} + \left(3 a + 14\right)\cdot 17^{12} + \left(9 a + 16\right)\cdot 17^{13} + \left(5 a + 7\right)\cdot 17^{14} + \left(16 a + 8\right)\cdot 17^{15} +O\left(17^{ 16 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2,4)$ |
| $(3,5,6)$ |
| $(1,5,2,3)(4,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $9$ |
$2$ |
$(1,2)(3,5)$ |
$0$ |
| $4$ |
$3$ |
$(3,5,6)$ |
$1$ |
| $4$ |
$3$ |
$(1,2,4)(3,5,6)$ |
$-2$ |
| $9$ |
$4$ |
$(1,5,2,3)(4,6)$ |
$0$ |
| $9$ |
$4$ |
$(1,3,2,5)(4,6)$ |
$0$ |
The blue line marks the conjugacy class containing complex conjugation.