Properties

Label 4.3e8_13e3.6t10.3c1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 3^{8} \cdot 13^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$14414517= 3^{8} \cdot 13^{3} $
Artin number field: Splitting field of $f= x^{6} - x^{5} - 3 x^{4} + x^{3} + 6 x^{2} - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 17 }$ to precision 12.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 17 }$: $ x^{2} + 16 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 a + 11 + \left(3 a + 15\right)\cdot 17 + \left(13 a + 3\right)\cdot 17^{2} + 15\cdot 17^{3} + \left(10 a + 13\right)\cdot 17^{4} + \left(15 a + 15\right)\cdot 17^{5} + \left(5 a + 16\right)\cdot 17^{6} + \left(3 a + 15\right)\cdot 17^{7} + \left(11 a + 1\right)\cdot 17^{8} + \left(4 a + 15\right)\cdot 17^{9} + \left(9 a + 8\right)\cdot 17^{10} + \left(12 a + 16\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 2 }$ $=$ $ 5 + 4\cdot 17 + 5\cdot 17^{2} + 7\cdot 17^{3} + 8\cdot 17^{4} + 17^{5} + 4\cdot 17^{6} + 11\cdot 17^{7} + 16\cdot 17^{8} + 17^{9} + 15\cdot 17^{10} + 11\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 3 }$ $=$ $ 14 a + 14 + \left(13 a + 15\right)\cdot 17 + \left(3 a + 13\right)\cdot 17^{2} + \left(16 a + 2\right)\cdot 17^{3} + \left(6 a + 6\right)\cdot 17^{4} + \left(a + 4\right)\cdot 17^{5} + \left(11 a + 7\right)\cdot 17^{6} + \left(13 a + 13\right)\cdot 17^{7} + \left(5 a + 9\right)\cdot 17^{8} + \left(12 a + 8\right)\cdot 17^{9} + \left(7 a + 13\right)\cdot 17^{10} + \left(4 a + 2\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 4 }$ $=$ $ 11 + 14\cdot 17 + 14\cdot 17^{2} + 10\cdot 17^{3} + 11\cdot 17^{4} + 17^{6} + 15\cdot 17^{7} + 14\cdot 17^{8} + 16\cdot 17^{9} + 7\cdot 17^{10} + 5\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 5 }$ $=$ $ 8 a + 10 + \left(2 a + 11\right)\cdot 17 + \left(16 a + 16\right)\cdot 17^{2} + \left(13 a + 16\right)\cdot 17^{3} + \left(16 a + 3\right)\cdot 17^{4} + \left(11 a + 8\right)\cdot 17^{5} + \left(3 a + 6\right)\cdot 17^{6} + \left(3 a + 6\right)\cdot 17^{7} + \left(5 a + 11\right)\cdot 17^{8} + \left(11 a + 9\right)\cdot 17^{9} + \left(3 a + 6\right)\cdot 17^{10} + \left(7 a + 5\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 1 + \left(14 a + 6\right)\cdot 17 + 13\cdot 17^{2} + \left(3 a + 14\right)\cdot 17^{3} + 6\cdot 17^{4} + \left(5 a + 3\right)\cdot 17^{5} + \left(13 a + 15\right)\cdot 17^{6} + \left(13 a + 5\right)\cdot 17^{7} + \left(11 a + 13\right)\cdot 17^{8} + \left(5 a + 15\right)\cdot 17^{9} + \left(13 a + 15\right)\cdot 17^{10} + \left(9 a + 8\right)\cdot 17^{11} +O\left(17^{ 12 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(4,5,6)$
$(1,2,3)$
$(1,5,2,4)(3,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$9$$2$$(1,2)(4,5)$$0$
$4$$3$$(1,2,3)$$-2$
$4$$3$$(1,2,3)(4,5,6)$$1$
$9$$4$$(1,5,2,4)(3,6)$$0$
$9$$4$$(1,4,2,5)(3,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.