Properties

Label 4.3e8_13.6t13.1c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{8} \cdot 13 $
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$85293= 3^{8} \cdot 13 $
Artin number field: Splitting field of $f= x^{6} - 6 x^{4} - x^{3} + 9 x^{2} + 3 x - 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even
Determinant: 1.13.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 48 + 39\cdot 61 + 18\cdot 61^{2} + 6\cdot 61^{3} + 19\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 60 a + 7 + \left(21 a + 60\right)\cdot 61 + \left(53 a + 35\right)\cdot 61^{2} + \left(19 a + 13\right)\cdot 61^{3} + \left(59 a + 1\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 5\cdot 61 + 15\cdot 61^{2} + 14\cdot 61^{3} + 57\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 17 a + 38 + \left(11 a + 30\right)\cdot 61 + \left(51 a + 33\right)\cdot 61^{2} + \left(41 a + 58\right)\cdot 61^{3} + \left(45 a + 60\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ a + 6 + \left(39 a + 22\right)\cdot 61 + \left(7 a + 6\right)\cdot 61^{2} + \left(41 a + 41\right)\cdot 61^{3} + \left(a + 40\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 44 a + 55 + \left(49 a + 24\right)\cdot 61 + \left(9 a + 12\right)\cdot 61^{2} + \left(19 a + 49\right)\cdot 61^{3} + \left(15 a + 3\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(3,4)$
$(3,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,4)(5,6)$$2$
$6$$2$$(2,5)$$0$
$9$$2$$(2,5)(4,6)$$0$
$4$$3$$(1,2,5)(3,4,6)$$1$
$4$$3$$(1,2,5)$$-2$
$18$$4$$(1,3)(2,6,5,4)$$0$
$12$$6$$(1,4,2,6,5,3)$$-1$
$12$$6$$(2,5)(3,4,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.