Properties

Label 4.3e7_13e2.12t34.2c1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{7} \cdot 13^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$369603= 3^{7} \cdot 13^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - x^{3} + 9 x^{2} + 6 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd
Determinant: 1.3.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 61 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 61 }$: $ x^{2} + 60 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 41 + \left(56 a + 43\right)\cdot 61 + \left(37 a + 11\right)\cdot 61^{2} + \left(53 a + 25\right)\cdot 61^{3} + \left(38 a + 26\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 47 a + 55 + \left(4 a + 24\right)\cdot 61 + \left(23 a + 54\right)\cdot 61^{2} + \left(7 a + 40\right)\cdot 61^{3} + \left(22 a + 11\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 10 + 7\cdot 61 + 10\cdot 61^{2} + 35\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 26 + 53\cdot 61 + 55\cdot 61^{2} + 55\cdot 61^{3} + 22\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 51 a + \left(30 a + 37\right)\cdot 61 + \left(57 a + 42\right)\cdot 61^{2} + \left(9 a + 23\right)\cdot 61^{3} + \left(20 a + 38\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 10 a + 51 + \left(30 a + 16\right)\cdot 61 + \left(3 a + 8\right)\cdot 61^{2} + \left(51 a + 37\right)\cdot 61^{3} + \left(40 a + 48\right)\cdot 61^{4} +O\left(61^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,5)(4,6)$
$(3,5,6)$
$(3,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$6$$2$$(1,3)(2,5)(4,6)$$-2$
$6$$2$$(2,4)$$0$
$9$$2$$(2,4)(5,6)$$0$
$4$$3$$(3,5,6)$$-2$
$4$$3$$(1,2,4)(3,5,6)$$1$
$18$$4$$(1,3)(2,6,4,5)$$0$
$12$$6$$(1,3,2,5,4,6)$$1$
$12$$6$$(2,4)(3,5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.