Properties

Label 4.3e6_5e3_7e2.6t10.1c1
Dimension 4
Group $C_3^2:C_4$
Conductor $ 3^{6} \cdot 5^{3} \cdot 7^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:C_4$
Conductor:$4465125= 3^{6} \cdot 5^{3} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} + 6 x^{4} - 7 x^{3} + 9 x^{2} - 21 x + 11 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:C_4$
Parity: Even
Determinant: 1.5.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 11 }$ to precision 17.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 11 }$: $ x^{2} + 7 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 10\cdot 11 + 10\cdot 11^{2} + 2\cdot 11^{3} + 9\cdot 11^{4} + 5\cdot 11^{5} + 4\cdot 11^{6} + 6\cdot 11^{7} + 7\cdot 11^{8} + 4\cdot 11^{9} + 6\cdot 11^{10} + 11^{11} + 7\cdot 11^{12} + 9\cdot 11^{13} + 8\cdot 11^{14} + 4\cdot 11^{15} + 5\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 9 + a\cdot 11 + 5 a\cdot 11^{2} + 4 a\cdot 11^{3} + \left(a + 8\right)\cdot 11^{4} + \left(9 a + 9\right)\cdot 11^{5} + \left(7 a + 10\right)\cdot 11^{6} + \left(7 a + 4\right)\cdot 11^{7} + 3\cdot 11^{8} + \left(2 a + 7\right)\cdot 11^{9} + \left(7 a + 7\right)\cdot 11^{10} + \left(a + 7\right)\cdot 11^{11} + \left(5 a + 7\right)\cdot 11^{12} + \left(7 a + 4\right)\cdot 11^{13} + \left(3 a + 4\right)\cdot 11^{14} + \left(2 a + 3\right)\cdot 11^{15} + 3 a\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 3 }$ $=$ $ 9 a + 4 + \left(5 a + 4\right)\cdot 11 + \left(6 a + 6\right)\cdot 11^{2} + \left(3 a + 5\right)\cdot 11^{3} + \left(7 a + 4\right)\cdot 11^{4} + 10\cdot 11^{5} + \left(10 a + 10\right)\cdot 11^{6} + \left(10 a + 1\right)\cdot 11^{7} + \left(4 a + 8\right)\cdot 11^{8} + \left(10 a + 6\right)\cdot 11^{9} + \left(a + 3\right)\cdot 11^{10} + \left(10 a + 7\right)\cdot 11^{11} + \left(6 a + 9\right)\cdot 11^{12} + \left(2 a + 9\right)\cdot 11^{13} + \left(a + 10\right)\cdot 11^{14} + \left(5 a + 9\right)\cdot 11^{15} + \left(9 a + 2\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 3 + \left(9 a + 2\right)\cdot 11 + \left(5 a + 8\right)\cdot 11^{2} + \left(6 a + 1\right)\cdot 11^{3} + \left(9 a + 9\right)\cdot 11^{4} + a\cdot 11^{5} + 3 a\cdot 11^{6} + \left(3 a + 6\right)\cdot 11^{7} + \left(10 a + 9\right)\cdot 11^{8} + \left(8 a + 3\right)\cdot 11^{9} + \left(3 a + 1\right)\cdot 11^{10} + \left(9 a + 7\right)\cdot 11^{11} + \left(5 a + 4\right)\cdot 11^{12} + \left(3 a + 7\right)\cdot 11^{13} + 7 a\cdot 11^{14} + \left(8 a + 9\right)\cdot 11^{15} + \left(7 a + 10\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 5 }$ $=$ $ 10 + 7\cdot 11 + 2\cdot 11^{2} + 9\cdot 11^{3} + 4\cdot 11^{4} + 9\cdot 11^{8} + 10\cdot 11^{9} + 11^{10} + 7\cdot 11^{11} + 9\cdot 11^{12} + 9\cdot 11^{13} + 5\cdot 11^{14} + 9\cdot 11^{15} + 10\cdot 11^{16} +O\left(11^{ 17 }\right)$
$r_{ 6 }$ $=$ $ 2 a + 7 + \left(5 a + 7\right)\cdot 11 + \left(4 a + 4\right)\cdot 11^{2} + \left(7 a + 2\right)\cdot 11^{3} + \left(3 a + 8\right)\cdot 11^{4} + \left(10 a + 5\right)\cdot 11^{5} + 6\cdot 11^{6} + 2\cdot 11^{7} + \left(6 a + 6\right)\cdot 11^{8} + 10\cdot 11^{9} + 9 a\cdot 11^{10} + 2\cdot 11^{11} + \left(4 a + 5\right)\cdot 11^{12} + \left(8 a + 2\right)\cdot 11^{13} + \left(9 a + 2\right)\cdot 11^{14} + \left(5 a + 7\right)\cdot 11^{15} + \left(a + 2\right)\cdot 11^{16} +O\left(11^{ 17 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4,3,2)(5,6)$
$(1,3,6)$
$(2,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$9$$2$$(1,3)(2,4)$$0$
$4$$3$$(1,3,6)$$1$
$4$$3$$(1,3,6)(2,4,5)$$-2$
$9$$4$$(1,4,3,2)(5,6)$$0$
$9$$4$$(1,2,3,4)(5,6)$$0$
The blue line marks the conjugacy class containing complex conjugation.