Properties

Label 4.3e6_19e2.5t4.2c1
Dimension 4
Group $\PSL(2,5)$
Conductor $ 3^{6} \cdot 19^{2}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$\PSL(2,5)$
Conductor:$263169= 3^{6} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 2 x^{3} - 9 x^{2} + 9 x - 6 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even
Determinant: 1.1.1t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 7 a + 13 + \left(18 a + 7\right)\cdot 43 + \left(7 a + 32\right)\cdot 43^{2} + \left(13 a + 8\right)\cdot 43^{3} + \left(9 a + 40\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 32 + 39\cdot 43 + 22\cdot 43^{2} + 3\cdot 43^{3} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 4 + 24\cdot 43 + 23\cdot 43^{2} + 41\cdot 43^{3} + 41\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 36 a + 20 + \left(24 a + 18\right)\cdot 43 + \left(35 a + 21\right)\cdot 43^{2} + \left(29 a + 14\right)\cdot 43^{3} + \left(33 a + 36\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 23 a + 20 + 18 a\cdot 43 + \left(18 a + 36\right)\cdot 43^{2} + \left(5 a + 36\right)\cdot 43^{3} + \left(36 a + 39\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 20 a + \left(24 a + 39\right)\cdot 43 + \left(24 a + 35\right)\cdot 43^{2} + \left(37 a + 23\right)\cdot 43^{3} + \left(6 a + 27\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,6)(3,4)$
$(1,3,6)(2,5,4)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character value
$1$$1$$()$$4$
$15$$2$$(1,5)(3,6)$$0$
$20$$3$$(1,3,6)(2,5,4)$$1$
$12$$5$$(1,4,2,5,3)$$-1$
$12$$5$$(1,2,3,4,5)$$-1$
The blue line marks the conjugacy class containing complex conjugation.