Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 7 a + 13 + \left(18 a + 7\right)\cdot 43 + \left(7 a + 32\right)\cdot 43^{2} + \left(13 a + 8\right)\cdot 43^{3} + \left(9 a + 40\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ 32 + 39\cdot 43 + 22\cdot 43^{2} + 3\cdot 43^{3} + 29\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 4 + 24\cdot 43 + 23\cdot 43^{2} + 41\cdot 43^{3} + 41\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ 36 a + 20 + \left(24 a + 18\right)\cdot 43 + \left(35 a + 21\right)\cdot 43^{2} + \left(29 a + 14\right)\cdot 43^{3} + \left(33 a + 36\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 23 a + 20 + 18 a\cdot 43 + \left(18 a + 36\right)\cdot 43^{2} + \left(5 a + 36\right)\cdot 43^{3} + \left(36 a + 39\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 20 a + \left(24 a + 39\right)\cdot 43 + \left(24 a + 35\right)\cdot 43^{2} + \left(37 a + 23\right)\cdot 43^{3} + \left(6 a + 27\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,6)(3,4)$ |
| $(1,3,6)(2,5,4)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character values |
| | |
$c1$ |
| $1$ |
$1$ |
$()$ |
$4$ |
| $15$ |
$2$ |
$(1,5)(3,6)$ |
$0$ |
| $20$ |
$3$ |
$(1,3,6)(2,5,4)$ |
$1$ |
| $12$ |
$5$ |
$(1,4,2,5,3)$ |
$-1$ |
| $12$ |
$5$ |
$(1,2,3,4,5)$ |
$-1$ |
The blue line marks the conjugacy class containing complex conjugation.