Properties

Label 4.3e6_19e2.5t4.1
Dimension 4
Group $A_5$
Conductor $ 3^{6} \cdot 19^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$A_5$
Conductor:$263169= 3^{6} \cdot 19^{2} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + x^{3} + 2 x^{2} + x + 5 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $A_5$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 43 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 43 }$: $ x^{2} + 42 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 3 + 13\cdot 43 + 34\cdot 43^{2} + 31\cdot 43^{3} + 12\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 36 a + 23 + \left(30 a + 9\right)\cdot 43 + \left(26 a + 38\right)\cdot 43^{2} + \left(14 a + 9\right)\cdot 43^{3} + \left(14 a + 4\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 5 a + 20 + \left(3 a + 30\right)\cdot 43 + \left(15 a + 26\right)\cdot 43^{2} + \left(5 a + 6\right)\cdot 43^{3} + \left(17 a + 5\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 7 a + 16 + \left(12 a + 4\right)\cdot 43 + \left(16 a + 34\right)\cdot 43^{2} + \left(28 a + 40\right)\cdot 43^{3} + \left(28 a + 3\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 25 + \left(39 a + 28\right)\cdot 43 + \left(27 a + 38\right)\cdot 43^{2} + \left(37 a + 39\right)\cdot 43^{3} + \left(25 a + 16\right)\cdot 43^{4} +O\left(43^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2,3)$
$(3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$15$ $2$ $(1,2)(3,4)$ $0$
$20$ $3$ $(1,2,3)$ $1$
$12$ $5$ $(1,2,3,4,5)$ $-1$
$12$ $5$ $(1,3,4,5,2)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.