Properties

Label 4.3e6_11e3.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{6} \cdot 11^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$970299= 3^{6} \cdot 11^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 6 x^{4} + 12 x^{3} + 15 x^{2} + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 31 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 31 }$: $ x^{2} + 29 x + 3 $
Roots:
$r_{ 1 }$ $=$ $ 26 a + 30 + \left(23 a + 14\right)\cdot 31 + \left(5 a + 15\right)\cdot 31^{2} + \left(26 a + 5\right)\cdot 31^{3} + \left(8 a + 9\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 5 a + 20 + \left(7 a + 5\right)\cdot 31 + \left(25 a + 3\right)\cdot 31^{2} + \left(4 a + 21\right)\cdot 31^{3} + 22 a\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 29 + 26\cdot 31^{2} + 30\cdot 31^{3} + 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 13 a + 10 + \left(10 a + 19\right)\cdot 31 + \left(14 a + 2\right)\cdot 31^{2} + \left(18 a + 7\right)\cdot 31^{3} + \left(21 a + 24\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 2 + 25\cdot 31 + 24\cdot 31^{2} + 29\cdot 31^{3} + 7\cdot 31^{4} +O\left(31^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 18 a + 5 + \left(20 a + 27\right)\cdot 31 + \left(16 a + 20\right)\cdot 31^{2} + \left(12 a + 29\right)\cdot 31^{3} + \left(9 a + 17\right)\cdot 31^{4} +O\left(31^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $0$
$6$ $2$ $(2,5)$ $2$
$9$ $2$ $(2,5)(4,6)$ $0$
$4$ $3$ $(1,2,5)$ $1$
$4$ $3$ $(1,2,5)(3,4,6)$ $-2$
$18$ $4$ $(1,3)(2,6,5,4)$ $0$
$12$ $6$ $(1,4,2,6,5,3)$ $0$
$12$ $6$ $(2,5)(3,4,6)$ $-1$
The blue line marks the conjugacy class containing complex conjugation.