Properties

Label 4.3e5_79.6t13.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{5} \cdot 79 $
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$19197= 3^{5} \cdot 79 $
Artin number field: Splitting field of $f= x^{6} - 9 x^{4} - 17 x^{3} - 39 x^{2} - 42 x + 13 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 67 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 67 }$: $ x^{2} + 63 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 14 a + 61 + \left(62 a + 33\right)\cdot 67 + \left(41 a + 49\right)\cdot 67^{2} + \left(2 a + 24\right)\cdot 67^{3} + \left(32 a + 32\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 29 a + 27 + \left(30 a + 29\right)\cdot 67 + \left(63 a + 22\right)\cdot 67^{2} + \left(8 a + 45\right)\cdot 67^{3} + \left(25 a + 18\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 53 a + 50 + 4 a\cdot 67 + \left(25 a + 21\right)\cdot 67^{2} + \left(64 a + 60\right)\cdot 67^{3} + \left(34 a + 23\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 23 + 32\cdot 67 + 63\cdot 67^{2} + 48\cdot 67^{3} + 10\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 38 a + 9 + \left(36 a + 55\right)\cdot 67 + \left(3 a + 44\right)\cdot 67^{2} + \left(58 a + 17\right)\cdot 67^{3} + \left(41 a + 43\right)\cdot 67^{4} +O\left(67^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 31 + 49\cdot 67 + 66\cdot 67^{2} + 3\cdot 67^{3} + 5\cdot 67^{4} +O\left(67^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3,4)$
$(1,2)(3,5)(4,6)$
$(1,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,5)(4,6)$ $2$
$6$ $2$ $(1,3)$ $0$
$9$ $2$ $(1,3)(2,5)$ $0$
$4$ $3$ $(1,3,4)$ $-2$
$4$ $3$ $(1,3,4)(2,5,6)$ $1$
$18$ $4$ $(1,5,3,2)(4,6)$ $0$
$12$ $6$ $(1,5,3,6,4,2)$ $-1$
$12$ $6$ $(1,3)(2,5,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.