Properties

Label 4.3e5_5e3_479e3.10t12.1c1
Dimension 4
Group $S_5$
Conductor $ 3^{5} \cdot 5^{3} \cdot 479^{3}$
Root number 1
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$S_5$
Conductor:$3338280509625= 3^{5} \cdot 5^{3} \cdot 479^{3} $
Artin number field: Splitting field of $f= x^{5} - x^{4} + 2 x^{3} - 5 x^{2} + 5 x - 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $S_5$
Parity: Even
Determinant: 1.3_5_479.2t1.1c1

Galois action

Roots of defining polynomial

The roots of $f$ are computed in $\Q_{ 269 }$ to precision 5.
Roots:
$r_{ 1 }$ $=$ $ 19 + 38\cdot 269 + 220\cdot 269^{2} + 266\cdot 269^{3} + 205\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 56 + 234\cdot 269 + 195\cdot 269^{2} + 160\cdot 269^{3} + 264\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 211 + 93\cdot 269 + 159\cdot 269^{2} + 5\cdot 269^{3} + 232\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 260 + 228\cdot 269 + 179\cdot 269^{2} + 112\cdot 269^{3} + 219\cdot 269^{4} +O\left(269^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 262 + 211\cdot 269 + 51\cdot 269^{2} + 261\cdot 269^{3} + 153\cdot 269^{4} +O\left(269^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 5 }$

Cycle notation
$(1,2)$
$(1,2,3,4,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 5 }$ Character value
$1$$1$$()$$4$
$10$$2$$(1,2)$$-2$
$15$$2$$(1,2)(3,4)$$0$
$20$$3$$(1,2,3)$$1$
$30$$4$$(1,2,3,4)$$0$
$24$$5$$(1,2,3,4,5)$$-1$
$20$$6$$(1,2,3)(4,5)$$1$
The blue line marks the conjugacy class containing complex conjugation.