Properties

Label 4.3e5_5e2_7e2.6t13.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{5} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$297675= 3^{5} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} - 6 x^{4} + 12 x^{3} + 18 x^{2} + 3 x + 3 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: $C_3^2:D_4$
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 a + 13 + \left(20 a + 20\right)\cdot 37 + 33\cdot 37^{2} + \left(16 a + 3\right)\cdot 37^{3} + 2 a\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 4 a + 7 + \left(32 a + 26\right)\cdot 37 + \left(10 a + 19\right)\cdot 37^{2} + \left(3 a + 9\right)\cdot 37^{3} + \left(13 a + 9\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 21 a + 3 + \left(16 a + 12\right)\cdot 37 + \left(36 a + 15\right)\cdot 37^{2} + \left(20 a + 30\right)\cdot 37^{3} + \left(34 a + 30\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 35 + 23\cdot 37 + 33\cdot 37^{2} + 25\cdot 37^{3} + 5\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 33 + 25\cdot 37 + 14\cdot 37^{2} + 29\cdot 37^{3} + 6\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 33 a + 23 + \left(4 a + 2\right)\cdot 37 + \left(26 a + 31\right)\cdot 37^{2} + \left(33 a + 11\right)\cdot 37^{3} + \left(23 a + 21\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(2,4)$
$(1,2)(3,4)(5,6)$
$(2,4,6)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,2)(3,4)(5,6)$ $2$
$6$ $2$ $(3,5)$ $0$
$9$ $2$ $(3,5)(4,6)$ $0$
$4$ $3$ $(1,3,5)(2,4,6)$ $1$
$4$ $3$ $(1,3,5)$ $-2$
$18$ $4$ $(1,2)(3,6,5,4)$ $0$
$12$ $6$ $(1,4,3,6,5,2)$ $-1$
$12$ $6$ $(2,4,6)(3,5)$ $0$
The blue line marks the conjugacy class containing complex conjugation.