Properties

Label 4.3e5_5e2_7e2.12t34.2
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{5} \cdot 5^{2} \cdot 7^{2}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$297675= 3^{5} \cdot 5^{2} \cdot 7^{2} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{5} + 3 x^{4} + 5 x^{3} - 12 x^{2} + 7 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Odd

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 37 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 37 }$: $ x^{2} + 33 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 16 + 10\cdot 37 + 12\cdot 37^{2} + 9\cdot 37^{3} + 11\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 2 }$ $=$ $ 11 a + 11 + \left(13 a + 19\right)\cdot 37 + \left(2 a + 24\right)\cdot 37^{2} + \left(5 a + 29\right)\cdot 37^{3} + \left(34 a + 17\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 26 a + 18 + \left(23 a + 24\right)\cdot 37 + \left(34 a + 20\right)\cdot 37^{2} + \left(31 a + 10\right)\cdot 37^{3} + \left(2 a + 1\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 29 a + 26 + \left(6 a + 11\right)\cdot 37 + \left(26 a + 4\right)\cdot 37^{2} + \left(15 a + 32\right)\cdot 37^{3} + \left(15 a + 16\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 12 + 35\cdot 37 + 20\cdot 37^{2} + 34\cdot 37^{3} +O\left(37^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 8 a + 31 + \left(30 a + 9\right)\cdot 37 + \left(10 a + 28\right)\cdot 37^{2} + \left(21 a + 31\right)\cdot 37^{3} + \left(21 a + 25\right)\cdot 37^{4} +O\left(37^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,4)(2,5)(3,6)$
$(1,2)$
$(1,2,3)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,4)(2,5)(3,6)$ $0$
$6$ $2$ $(1,2)$ $-2$
$9$ $2$ $(1,2)(4,5)$ $0$
$4$ $3$ $(1,2,3)$ $1$
$4$ $3$ $(1,2,3)(4,5,6)$ $-2$
$18$ $4$ $(1,5,2,4)(3,6)$ $0$
$12$ $6$ $(1,5,2,6,3,4)$ $0$
$12$ $6$ $(1,2)(4,5,6)$ $1$
The blue line marks the conjugacy class containing complex conjugation.