Basic invariants
Galois action
Roots of defining polynomial
The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
| $r_{ 1 }$ |
$=$ |
$ 12 a + 2 + \left(7 a + 11\right)\cdot 13 + \left(5 a + 4\right)\cdot 13^{2} + \left(5 a + 1\right)\cdot 13^{3} + \left(4 a + 9\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 2 }$ |
$=$ |
$ a + 7 + \left(a + 1\right)\cdot 13 + \left(7 a + 10\right)\cdot 13^{2} + \left(3 a + 11\right)\cdot 13^{3} + \left(6 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 3 }$ |
$=$ |
$ 11 + 9\cdot 13 + 12\cdot 13^{2} + 5\cdot 13^{3} + 5\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 4 }$ |
$=$ |
$ a + 1 + \left(5 a + 7\right)\cdot 13 + \left(7 a + 2\right)\cdot 13^{2} + \left(7 a + 1\right)\cdot 13^{3} + \left(8 a + 8\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 5 }$ |
$=$ |
$ 10 + 7\cdot 13 + 5\cdot 13^{2} + 10\cdot 13^{3} + 8\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
| $r_{ 6 }$ |
$=$ |
$ 12 a + 8 + \left(11 a + 1\right)\cdot 13 + \left(5 a + 3\right)\cdot 13^{2} + \left(9 a + 8\right)\cdot 13^{3} + \left(6 a + 11\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$ |
Generators of the action on the roots
$r_1, \ldots, r_{ 6 }$
| Cycle notation |
| $(1,2)(3,4)(5,6)$ |
| $(2,3)$ |
| $(2,3,6)$ |
Character values on conjugacy classes
| Size | Order | Action on
$r_1, \ldots, r_{ 6 }$
| Character value |
| $1$ | $1$ | $()$ | $4$ |
| $6$ | $2$ | $(1,2)(3,4)(5,6)$ | $0$ |
| $6$ | $2$ | $(3,6)$ | $-2$ |
| $9$ | $2$ | $(3,6)(4,5)$ | $0$ |
| $4$ | $3$ | $(1,4,5)(2,3,6)$ | $-2$ |
| $4$ | $3$ | $(1,4,5)$ | $1$ |
| $18$ | $4$ | $(1,2)(3,5,6,4)$ | $0$ |
| $12$ | $6$ | $(1,3,4,6,5,2)$ | $0$ |
| $12$ | $6$ | $(1,4,5)(3,6)$ | $1$ |
The blue line marks the conjugacy class containing complex conjugation.