Properties

Label 4.3e5_43e3.12t34.1
Dimension 4
Group $C_3^2:D_4$
Conductor $ 3^{5} \cdot 43^{3}$
Frobenius-Schur indicator 1

Related objects

Learn more about

Basic invariants

Dimension:$4$
Group:$C_3^2:D_4$
Conductor:$19320201= 3^{5} \cdot 43^{3} $
Artin number field: Splitting field of $f= x^{6} - 3 x^{4} - 2 x^{3} - 30 x^{2} + 3 x + 1 $ over $\Q$
Size of Galois orbit: 1
Smallest containing permutation representation: 12T34
Parity: Even

Galois action

Roots of defining polynomial

The roots of $f$ are computed in an extension of $\Q_{ 13 }$ to precision 5.
Minimal polynomial of a generator $a$ of $K$ over $\mathbb{Q}_{ 13 }$: $ x^{2} + 12 x + 2 $
Roots:
$r_{ 1 }$ $=$ $ 12 a + 11 + 5\cdot 13 + \left(12 a + 11\right)\cdot 13^{2} + \left(5 a + 10\right)\cdot 13^{3} + \left(9 a + 1\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 2 }$ $=$ $ a + 10 + \left(12 a + 7\right)\cdot 13 + 9\cdot 13^{2} + \left(7 a + 4\right)\cdot 13^{3} + \left(3 a + 5\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 3 }$ $=$ $ 6 + 6\cdot 13 + 12\cdot 13^{2} + 5\cdot 13^{3} + 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 4 }$ $=$ $ 4 a + 8 + \left(10 a + 6\right)\cdot 13 + \left(6 a + 8\right)\cdot 13^{2} + \left(11 a + 7\right)\cdot 13^{3} + \left(9 a + 6\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 5 }$ $=$ $ 5 + 12\cdot 13 + 4\cdot 13^{2} + 10\cdot 13^{3} + 5\cdot 13^{4} +O\left(13^{ 5 }\right)$
$r_{ 6 }$ $=$ $ 9 a + 12 + \left(2 a + 12\right)\cdot 13 + \left(6 a + 4\right)\cdot 13^{2} + \left(a + 12\right)\cdot 13^{3} + \left(3 a + 4\right)\cdot 13^{4} +O\left(13^{ 5 }\right)$

Generators of the action on the roots $r_1, \ldots, r_{ 6 }$

Cycle notation
$(1,3)(2,4)(5,6)$
$(1,2)$
$(1,2,5)$

Character values on conjugacy classes

SizeOrderAction on $r_1, \ldots, r_{ 6 }$ Character values
$c1$
$1$ $1$ $()$ $4$
$6$ $2$ $(1,3)(2,4)(5,6)$ $-2$
$6$ $2$ $(2,5)$ $0$
$9$ $2$ $(2,5)(4,6)$ $0$
$4$ $3$ $(1,2,5)$ $-2$
$4$ $3$ $(1,2,5)(3,4,6)$ $1$
$18$ $4$ $(1,3)(2,6,5,4)$ $0$
$12$ $6$ $(1,4,2,6,5,3)$ $1$
$12$ $6$ $(2,5)(3,4,6)$ $0$
The blue line marks the conjugacy class containing complex conjugation.